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This work targets investors interested in adding Mongolian equities to their well-

diversified portfolios through mimicking the TOP-20 Index, the country’s main 

stock market indicator. Including the index, as opposed to picking single stocks, 

is a superior choice thanks to the availability of a consistent stream of daily price 

data, which facilitates risk-based analysis. 

Overview 

This work targets investors interested in port-

folios mimicking Mongolia’s TOP-20 Index, 

the main indicator of the Mongolian stock 

market. 

The index is calculated based on the market 

capitalisation and average daily trade of the 

top 20 securities listed on the Mongolian 

Stock Exchangea (MSE). As of December 

2016, the index constituents are Apu 

Company (ticker: APU), Mongolia’s oldest 

enterprise and the country’s premier brewer 

and beverage producerb; Baganuur (BAN), 

one of the big coal mining companies in the 

country (and the closest to the capital city)c; 

Bayangol Hotel (BNG), the capital’s oldest 

and trustable hotel complexd; Ulaanbaatar 

BUK (BUK), a supplier of concrete products 

for builders and homeownerse; Arig Gal 

(EER), a manufacturer of wool and cashmere 

products; Gobi Cashmere (GOV), a leading 

designer and manufacturer of cashmere, 

wool, and yak down goodsf; Genco Tour 

Bureau (JTB), a leading tour companyg; 

Telecom Mongolia (MCH), a provider of 

internet and telecommunication servicesh; 

Material Impex (MIE), a supplier of building 

materialsi; MIK Holdings (MIK), a purchaser 

of mortgage loan pools, and provider of af- 

 

fordable housing for Mongolian citizensj; 

Makhimpex Shareholding Company (MMX), 

a manufacturer of meat and meat products; 

Mongol Post (MNP), the postal system of 

Mongoliak; Merex (MRX), a concrete plantl; 

Darkhan Nekhii (NEH), a manufacturer and 

distributor of sheepskin coats, leather 

goods, and shoesm; Remicon (RMC), a con-

crete producern; Sharin Gol (SHG), a coal 

mining companyo; Suu (SUU), Mongolia’s 

dairy products pioneerp; Talkh Chikher 

(TCK), a bakery products makerq; Tavan 

Tolgoi (TTL), one of the largest coal miners 

in the countryr; and Ulsiin Ikh Delguur (UID), 

the State Department Store, Ulaanbaatar’s 

landmark shopping centers. 

Investing in Mongolian equities can be a 

great way to add diversification benefit to a 

portfolio. Yet, several listed companies have 

sparse time series of prices, since they trade 

very thinly: this lack of data generally implies 

poor forecasting abilities and suboptimal 

risk management. On the contrary, the TOP-

20 Index has a very consistent and publicly 

available flow of daily trading data starting 

from January 3, 2005, and it is therefore 

suitable for fairly reliable risk-based analy-

ses. Creating a portfolio of TOP-20 constitu-
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ents, with weights equal to those implied by 

the index, is currently the only feasible way 

to invest in it, as it is not possible to purchase 

the index and, to our knowledge, index de-

rivatives are not currently present on the 

market. The purchase procedure shoud be 

relatively inexpensive, since only twenty se-

curities are involved, and these are usually 

among the most actively traded on the MSE. 

This work aims to determine whether buying 

Mongolia’s TOP-20 Index is beneficial, in 

terms of risk and reward involved. It uses e-

conometric techniques in an attempt to fore-

cast the distribution of index returns and to 

understand the likelihood, and entity of po-

tential future losses [1]. Due to the uncertain-

ty related to investing in emerging markets 

equities, we advise to include the asset in an 

already well-diversified portfolio. 

Data sample 

We use TOP-20 Index daily close prices over 

nine and a half years, from August 10, 2007 

to November 30, 2016* (Figure 1). This time 

frame is considered to be the most adequate 

to give a faithful representation of Mongolia’s 

current stock market conditions. In addition, 

we keep the most recent month of data, Dec-

ember 1-29, for out-of-sample (OOS) testing. 

We calculate daily log returns, the conven-

tional choice for univariate time series anal-

ysis, from close prices (Figure 2), and pro-

vide summary statistics (Table 1). On aver-

age, daily returns stay in the ±5.00% band, 

with most of them, in absolute value, close to 

zero. Inspection of their distribution (Figure 

3) provides a clearer picture of this fact. The 

sum of the two tallest histogram bars, repre-

senting the frequency of returns between 

±0.625%, is above 50%, and more than 95% 

of the observations lie in ±2.50%. In addi-

tion, as it is usually the case for daily data,  

 
 

 
 

Table 1: TOP-20 sample statistics 

Beginning 10/08/07 

Ending 30/11/16 

Sample Size 2320 

Frequency Daily 
Mean 0.0050% 

Variance 0.0174% 

Standard Deviation 1.3195% 

Skewness 0.2637 

Excess Kurtosis 11.7881 
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Figure 1: TOP-20 Daily Close Prices
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Figure 2: TOP-20 Daily Log Returns
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the mean sample return is indistinguishable 

from zero (0.0050%). 

Evidence of non-normality 

Having independent and identically distribu-

ted (i.i.d.) Normal observations is desirable 

in a forecasting exercise. The Normal distri-

bution is completely specified by its first two 

moments, so if the data at hand come from 

such a density, precise estimation of the 

population mean and variance is ensured by 

increasing sample size. 

However, TOP-20 Index evidences non-

normality features, as signalled by (in con-

trast to the Gaussian distribution, for which 

both parameters are equal to zero): positive 

skewness (there are more large positive than 

large negative returns in the sample) and 

positive excess kurtosis (the distribution has 

fat tails, high peak, and thin shoulders). Both 

features are apparent in the histogram a-

bove, as well as in the plot of the empirical 

against the Gaussian cumulative distribution 

functions (Figure 4). 

Another visual tool to detect non-normality is 

the autocorrelation function (ACF). Autocor-

relation (AC) measures the linear depend-

ence between today’s value of a time series 

variable and the past value of the same. By 

definition, i.i.d. Normal returns, as well as 

their transformations (such as the squares) 

have no autocorrelation at all lags. 

Autocorrelation hinders the ability to fore-

cast. We test AC for both TOP-20 Index log 

returns and squared returns. Generally, at 

daily intervals, log returns display close to 

zero AC at all lags, meaning no predict-

ability of tomorrow’s value based on today’s 

and previous days’ ones. Yet, at lag orders 

up to 17, TOP-20 Index exhibits statistically 

significant autocorrelation (Figure 5). Statis-

tical significance occurs if the value of the 

AC coefficient lies outside Bartlett’s bounds,  

 
 

 
 

 
 

provided at the 5% significance level (2.5% 

probability per tail) and, for sample size 

2320, equal to ±4.07%. One possible expla-

nation of the anomaly could be the low liqui-

dity of the index constituents. Squared re-

turns, instead, should naturally show positive 

and statistically significant AC at several 

lags. Squared returns are a valid proxy for 
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Figure 4: TOP-20 Index Cumulative 
Distribution Function Against the Gaussian
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Figure 5: Autocorrelation of TOP-20
Index Log Returns
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conditional variance, which empirically clus-

ters: if today’s variance is high (low), it is like-

ly that tomorrow’s variance will be high (low) 

as well. Although it is an additional symptom 

of the non-Gaussian nature of the data, posi-

tive AC of squared returns is by itself benefi-

cial, as volatility plays an essential role in the 

forecasting process since it helps making 

returns i.i.d. Normal. As expected, the AC of 

TOP-20 Index squared returns is strongly 

persistent, spiking at 20% at lag 10, and 

gradually fading only after 20 lags (Figure 6). 

The AC in both log and squared returns is to 

be reduced using variance forecasting tech-

niques. 

Variance forecasting techniques 

To make TOP-20 Index returns close to i.i.d. 

Normal, we divide them by conditional stan-

dard deviations able to capture the non-

Gaussian features of the data. This way, via 

the usual fraction simplification, such feat-

ures are as much as possible eliminated. 

The procedure is equivalent to data stan-

dardisation, since for daily returns the stan-

dard deviation (1.3195%) completely domi-

nates the mean (0.0050%), so it is safe to as-

sume it is equal to zero. The result of the 

standardisation process is a time series of 

shocks (returns divided by standard devia-

tion), which are more or less i.i.d. Normal de-

pending on the quality of the volatility proxy, 

and whose distribution should more closely 

resemble the Gaussian than the density of 

shocks standardised by unconditional vol-

atility (homoscedastic) (Table 2), mostly in 

terms of higher moments, skewness and ex-

cess kurtosis. 

There exist several conditional volatility mod-

els. We focus on two, RiskMetrics and 

GARCH(1,1), as well as on a less computa-

tional-intensive variation of the latter, Vari-

ance Targeting (VT). 

Table 2: Homoscedastic shocks statistics 

Mean 0.0038 

Variance 1.0000 

Standard Deviation 1.0000 

Skewness 0.2637 

Excess Kurtosis 11.7881 
 

Table 3: RiskMetrics parameter estimation 

 0.9172 

Maximised log-likelihood 9101.89 

Intercept (S.E.) 5.33E-05 (1.63E-05) 

Slope (S.E.) 0.6914 (0.0564) 

R-squared 6.09% 
 

 

 
RiskMetrics 

This conditional volatility model is complete- 

ly specified by parameter . For daily data, 

 is usually set to 0.94, although we here 

estimate it via maximum likelihood (MLE). 

MLE maximises the probability that the data 

sample is generated by the model used. In 

other words, it optimises the agreement of 

the selected model with the observed data. 

 = 0.9172, with a goodness of fit, obtained 

by regressing the time series of conditional 

variances (X) on squared returns (Y), of 

6.09% (Table 3). R-squared is usually poor 

(5-10%), so the model is not necessarily 

bad. In fact, RiskMetrics fit of the time series 

of squared returns turns out to be quite satis-

factory (Figure 7). The model successfully 

captures some non-normality features of the 

data: both skewness and excess kurtosis for 
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RiskMetrics shocks are reduced, down re-

spectively 37% and 67%, compared to the 

same parameters for homoscedastic (con-

stant variance) shocks (Table 4). 

GARCH(1,1) 

This widely popular model is completely 

specified by the three parameters , , and 

, whose values are necessarily estimated 

via MLE (Table 5).  = 1.13E-05,  = 0.1579, 

 = 0.7766, with a goodness of fit of 6.65%, 

almost 10% higher than with RiskMetrics. 

The likelihood ratio (LR) test (183.85) is posi-

tive and significant, showing that choosing 

GARCH over RiskMetrics leads to a better fit 

of the squared returns (Figure 8). The im-

provement is particularly visible in the peaks 

occurring on September 23, 2010 and Feb-

ruary 1, 2011, following abnormal squared 

returns. GARCH also bests RiskMetrics in 

terms of higher moments for the shocks 

(Table 6). Skewness is reduced by a stag-

gering 96% (homoscedastic) or 60% (Risk-

Metrics), excess kurtosis by 70% (homo-

scedastic) or 2% (RiskMetrics). In partic- 

ular, variance and skewness values are very 

close to Normality. 

GARCH(1,1)-VT 

Variance Targeting (VT), a slight variation of 

the GARCH model, conveniently sets  e-

qual to the unconditional (long-run) vari-

ance, thus reducing the number of parame-

ters to estimate by one. Apart from compu-

tational reasons, VT is useful whenever the 

sample variance (a proxy for the uncondi-

tional one) estimated from the data is 

thought to be representative of current stock 

market conditions. This occurs since 

GARCH itself usually leads to small devia-

tions from this value in the long-run volatility 

forecast (Table 7). GARCH-VT calibrates the 

parameters (Table 8) in order to obtain a 

Table 4: RiskMetrics shocks statistics 

Mean –0.0220 

Variance 1.1893 

Standard Deviation 1.0905 

Skewness 0.1672 

Excess Kurtosis 3.8669 
 

Table 5: GARCH(1,1) parameter estimation 

 1.13E-05 

 0.1579 

 0.7766 

Persistence ( + ) 0.9345 

Maximised log-likelihood 9193.81 

Intercept (S.E.) 4.35E-05 (1.65E-05) 

Slope (S.E.) 0.7525 (0.0586) 

R-squared 6.65% 

Likelihood Ratio test 183.85 
 

 
 

Table 6: GARCH(1,1) shocks statistics 

Mean –0.0279 

Variance 1.0016 

Standard Deviation 1.0008 

Skewness 0.0094 

Excess Kurtosis 3.6535 
 

Table 7: GARCH(1,1) long-run variance forecast 

Unconditional variance 0.000174 

Predicted variance 0.000172 

Error –2.36E-06 
 

predicted level of variance in line with cur-

rent sample variance (Table 9). GARCH-VT 

does not seem to add much to the fit, with 

very little variation in the value of , , and , 

and almost no improvement in terms of R-

squared (+0.05%). Moreover, the LR test is 

negative, although not statistically signifi-
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cant. VT shock statistics are also very close 

to those of GARCH (Table 10), with slightly 

worse odd moments (mean and skewness) 

and slightly better even moments (variance, 

standard deviation, and excess kurtosis). 

Nevertheless, we consider the estimated 

sample variance to be adequate to explain 

current Mongolian stock market conditions: 

in a 21-day out-of-sample experiment, be-

tween December 1 and December 29, 2016, 

conditional variance is found to oscillate a-

bout the long-run, unconditional value, so it 

is safe to assume it will eventually converge 

to this figure (Figure 9). 

Effectiveness of variance forecasting 

To test the effectiveness of the variance fore-

casting techniques, we rely on two visual 

tools. The first one is the QQ-plot, which 

maps out the input sample quantiles of 

shocks against those of a standard normal 

distribution; the second one is the autocorre-

lation function (ACF) of squared shocks. 

In a QQ-plot, data conforming to the Normal 

density lie on a straight, 45-degree line. Ho-

moscedastic shocks (log returns divided by 

sample variance) exhibit visible departure 

from Normality, especially in the tails (Figure 

10). In risk management, particularly rele-

vant are deviations occurring in the left tail, 

because they represent failure of the model 

to account for extreme negative events, u-

sually linked to severe monetary losses. Divi-

sion by constant volatility does not ade-

quately reduce the magnitude of the largest 

negative shock, –11.0539, corresponding to 

a single-day return of –14.59% on Septem-

ber 22, 2010. RiskMetrics offers an improve- 

ment, which is nevertheless only partial. Al-

though the shock on the same day becomes  

Table 8: GARCH-VT parameter estimation 

 1.11E-05 

 0.1581 

 0.7779 

Persistence ( + ) 0.9360 

Maximised log-likelihood 9193.81 

Intercept (S.E.) 4.36E-05 (1.65E-05) 

Slope (S.E.) 0.7488 (0.0583) 

R-squared 6.65% 

Likelihood Ratio test –0.0097 
 

Table 9: GARCH-VT long-run variance forecast 

Unconditional variance 0.000174 

Predicted variance 0.000174 

Error 0.00E+00 
 

Table 10: GARCH-VT shocks statistics 

Mean –0.0278 

Variance 0.9988 

Standard Deviation 0.9994 

Skewness 0.0115 

Excess Kurtosis 3.6379 
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now –6.3992, several other extreme values 

are farther from the 45-degree line than they 

were before (Figure 11), because variance 

is now 20% higher (1.1893, compared to 

1.000). In addition, the right tail is still clearly 

misspecified. GARCH-VT provides the best 

fit, globally (Figure 12). Both tails are well-

modelled, with extreme shocks much closer 

to the straight line than they were before. Of 

particular interest is the analysis of the 100 

worst outcomes, which shows that, apart 

from the most extreme value, whose magni-

tude (–7.6606) is slightly higher than with the 

RiskMetrics fit (–6.3992), all shocks are fair-

ly close to the 45-degree line (Figure 13). 

Inspection of the ACF of squared shocks 

leads to similar conclusions. While both con-

ditional volatility models are effective at 

reducing predictability, RiskMetrics repre-

sents a worse fit, with statistically significant 

AC at lag 1, and with past variables still able 

to explain about 10% of the values of those 

the following day (Figure 14). GARCH-VT, is 

a much better fit, with only mildly significant 

AC at lag 1: previous day variables are only 

able to explain about 4.36% of the values of 

those the following day, a statistic very close 

to that for Bartlett’s upper bound (4.07%) 

(Figure 15). 

Overall, the GARCH-VT model remarkably 

captures most of the non-normality embed-

ded in the sample minimising, in particular, 

skewness. We keep GARCH-VT shocks and 

look for a superior distribution fit, able to ac-

count for asymmetry and, most importantly, 

fat tails. 

Distribution fitting 

By treating data as Gaussian, it is unlikely to 

obtain a better fit even by further refining the 

conditional volatility model. The Normal den- 

 
 

 
 

 
 

sity does not account for higher order mo-

ments, which are still positive in the distribu-

tion of GARCH-VT shocks: skewness = 

0.0115, excess kurtosis = 3.6379. We first 

attempt to reduce the latter, due to its magni-

tude and importance in risk management, 

using the symmetric, standardised t distribu- 

tion. We then consider skewness, by intro-
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ducing an asymmetric version of t, obtained 

by merging two densities with different de-

grees of freedom, and we test whether fac-

toring this parameter in the model brings any 

improvement to the fit. Finally, we further re-

fine the left tail, using Extreme Value Theory 

(EVT). 

GARCH-VT standardised t distribution 

The Student’s t is able to capture the fatter 

tails and the thinner shoulders in the distri-

bution of data. We use the standardised ver-

sion of t, because we are interested in the 

distribution of shocks, with unit variance. The 

t is fully specified by one parameter, the 

number of degrees of freedom, which dic-

tates the shape of the density. The smaller 

this number, the fatter the tails and the less 

pronounced the peak of the resulting distri-

bution. Variance, the second central mo-

ment, is well-defined only if the number of 

degrees of freedom, d > 2. Kurtosis, the 

fourth central moment, exists only if d > 4. 

We estimate the optimal value for d via 

quasi-maximum likelihood (QMLE), a two-

step process: first, find the values of the con-

ditional volatilities; then, calculate the value 

of the degrees of freedom, maximising the 

log-likelihood function (MLE). For step one, 

we rely on the GARCH-VT model. For step 

two, we input 5.65, an initial approximation 

of d given by 6/(excess kurtosis) + 4, and we 

calibrate it to the data set to obtain d = 4.13 

(Table 11). 

The standardised t offers a much nicer fit to 

the distribution of GARCH-VT shocks than 

the Normal density does. The left tail, of par-

ticular interest to risk management, is nicely 

modelled, with only mild deviations for few 

extreme observations (Figure 16). The right 

tail, however, is still partly misspecified, a 

consequence of the symmetry of the distri-

bution, which is at odds with the positive  

 
 

 
 

Table 11: Standardised t parameter estimation 

Degrees of freedom (d) 4.13 

Maximised log-likelihood –3159.68 

d approximation 5.65 
 

 
 

skewness of the sample. Although we are 

not much interested in perfectly modelling 

the right tail, we now test whether including 

skewness in the model brings any significant 
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Figure 14: Autocorrelation of RiskMetrics 
Squared Shocks

Homoscedastic RiskMetrics
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Figure 15: Autocorrelation of GARCH-VT 
Squared Shocks

Homoscedastic GARCH-VT
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improvement to the fit.  

GARCH-VT asymmetric t distribution 

The asymmetric Student’s t is a generalised 

version of the standardised t introduced a-

bove. It is obtained by merging two distri-

butions at a point –A/B on the horizontal axis. 

The density is completely specified by two 

degrees of freedom, d1 > 2 and –1 < d2 < 1, 

dictating the shape of the distribution. The 

standardised t is a special case, with d1 = 

4.13 and d2 = 0, so that A = 0 and B = 1 and 

the distribution is symmetric and centered at 

the origin. We find optimal values for d1 and 

d2 via QMLE, using the available GARCH-VT 

shocks as input. Parameter calibration gen-

erates d1 = 4.09 and d2 = 0.09, so that –A/B 

= –0.1322 (Table 12). A positive value for d2 

indicates right skewness, as expected from 

the data (Figure 17). Including an additional 

parameter brings some enhancement to the 

fit, as shown by the statistically significant 

likelihood ratio test, 18.17 (99% confidence 

level, Chi-squared critical value: 6.63). The 

improvement is mostly visible in the shoul-

ders and in the parts of the tails closer to the 

center of the distribution, with the effect of 

bringing shocks in those regions nearer to 

the 45-degree line (Figure 18). However, ac-

counting for asymmetry in the model comes 

at the expense of the fit in the farthest 

regions of the tails: extreme shocks, espe-

cially negative ones, are now slightly offset, 

more distant from the straight line than they 

were before. The reason is that incorporating 

right skewness in the model makes the left 

tail thinner, understating the probability of 

negative extremes and overstating that of 

positive ones. Because precise left tail spe-

cification is crucial for risk control, we now 

turn to an approach that only makes use of  

 Table 12: Asymmetric t parameter estimation 

d1 4.09 

d2 0.09 

C 0.5252 

A 0.1328 

B 1.0043 

–A/B –0.1322 

Maximised log-likelihood –3150.60 

Likelihood ratio test 18.17 
 

 
 

 
 

negative extreme data. 

Extreme value theory 

Extreme value theory (EVT) asserts that the 

extreme tail of a broad range of distributions 

can be approximated by the Generalised 

Pareto Distribution (GPD). The tail of the 

GPD has shape dictated by parameter , 

with  > 0 (power tails) in presence of po-

sitive excess kurtosis. The two cases  = 0 

(Gaussian density, exponential tails) and  < 
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0 (platykurtic densities) are usually ignored 

in risk management. For  strictly positive, 

we can estimate the GPD distribution in 

closed form, using Hill’s estimator. The latter 

is completely specified by u, the threshold 

beyond which lie the extremes included in 

the analysis, Tu, the total number of observa-

tions larger than the threshold, and c, a con-

stant. We resort to a rule of thumb and set Tu 

= 50, to obtain optimal value for  = 0.2796 

(Table 13). 

The EVT fit appears to be slightly superior to 

that of the Standardised t distribution (Figure 

19). In particular, the third, fourth and fifth 

most extreme shocks are now quite in line 

with their predicted values. Overall, EVT pro-

vides a satisfactory approximation to the tail 

of the empirical density. 

We now introduce a widely used portfolio 

risk measure, Value at Risk. 

Value at Risk 

Value at Risk (VaR) is a threshold such that 

the probability that a given loss will be great-

er than this threshold in a predefined time 

window is equal to the selected confidence 

coefficient. We compute VaR at the 99% 

confidence level for the most significant mo-

dels discussed above, plus two: historical 

simulation (HS), a popular, albeit very poor 

model, and filtered historical simulation 

(FHS). Moreover, we provide an approxima-

tion to VaR that accounts for the estimated 

values of skewness and excess kurtosis, 

known as the Cornish-Fisher (CF) quantile.  

We start by analysing RiskMetrics (Figure 

20) and GARCH-VT (Figure 21) VaR, under 

the Normal density assumption. The former 

does not seem to adequately react to nega-

tive innovations, and tends to underestimate 

current market conditions in the computation  

Table 13: Hill’s estimator 

u –2.1024 

Tu 50 

 0.2796 

c 0.3074 
 

 
 

 
 

 
 

of VaR for the subsequent trading days. Pre-
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80% of this figure (Table 14). The latter is 

more adaptive, and better describes the vol-

atility clustering phenomenon, although it 

still slightly misrepresents VaR when market 

crashes occur. On the same day, model pre- 

dicted VaR was only 3.6% lower. 

We turn to the GARCH-VT model under the 

assumption of a Standardised t distribution 

(Figure 22). VaR appears to be extremely 

reactive in all situations, and fully covers po-

tential future losses following negative e-

vents, although it is probably too conserva-

tive at times, forcing to set apart a large a-

mount of assets after a loss occurs. For the 

day following the crash, predicted VaR was 

overestimated by 11.5%. 

GARCH-VT EVT (Figure 23) produces similar 

results, as it was already apparent from the 

analysis of the QQ-plots. It fully incorporates 

losses, and it is still expensive, although less 

than before. Following the crash, predicted 

VaR was overvalued by only 8%. 

The models considered up to this point are 

parametric in nature, because they make in-

ference on the shape of the probability den-

sity of sample data, whether Gaussian, Stu-

dent’s t, or GPD. We now turn to two widely 

used models, historical simulation (non-par- 

ametric) and filtered historical simulation 

(semi-parametric). HS lets the data convey 

information of the distribution of returns: an 

arbitrary number of past returns (here, the 

most recent 250) is sorted in ascending or-

der, and VaR is a percentile defined by a 

cut-off point. HS is easy to compute but mis-

leading, as it is unresponsive to market 

crashes and frequently gives rise to box-

shaped patterns (Figure 24). Forecast HS 

VaR for September 23, 2010 missed the 

target by almost 80%, as the model failed to 

update to new market conditions. 

Table 14: Sep 23, 2010 predicted VaR, % loss 

September 22, 2010 return –14.59 

Gaussian, RiskMetrics 11.17 

Gaussian, GARCH-VT 14.07 

Standardised t, GARCH-VT 16.27 

EVT, GARCH-VT 15.76 

Historical Simulation 3.39 

FHS, GARCH-VT 16.56 

Cornish-Fisher quantile 19.16 
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Figure 22: GARCH-VT Standardised t VaR
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Figure 23: GARCH-VT EVT VaR
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FHS combines the best of both parametric 

and non-parametric worlds: it relies on a 

conditional volatility model to calculate 

shocks, but it avoids making inference on 

their distribution, so it uses HS to find the 

percentile corresponding to VaR. FHS with 

GARCH-VT shocks (Figure 25) is a fairly ac- 

curate, albeit expensive model: it promptly 

reacts to losses, but it requires to set apart a 

large amount of assets. After the crash, VaR 

was overestimated by 13.5%. 

We finally provide the Cornish-Fisher quan-

tile, a Taylor expansion around the Gaussian 

density that accounts for skewness and ex-

cess kurtosis and works as an approxima-

tion of VaR. We input moment statistics for 

GARCH-VT shocks to obtain a CF quantile 

equal to –3.1683 (Table 15). 

We compare the performances of the main 

VaR models for the most recent year (Figure 

26). VaR is here defined in terms of maxi-

mum loss, hence it is positive. On one hand, 

Gaussian GARCH-VT gives the lowest pre-

dicted figure for VaR, often inadequate given 

current market conditions. On the other, CF 

GARCH-VT generates the highest value, al-

so inadequate because too expensive. Both 

models are not recommended. Standard-

ised t and EVT lead to similar and well-bal-

anced results, and these models we favour. 

We now report cumulative maximum poten-

tial daily profit or loss on TOP-20 Index for 

the whole data period (August 10, 2007 to 

November 30, 2016) given a trader’s daily 

VaR limit of MNT 1,000,000 (EUR 384.89) 

(Figure 27). The Gaussian model imposes 

the lowest risk-taking limits on the trader, 

maximising both the outstanding position 

and the profit or loss for the day. On the con-

trary, the CF model is very conservative, as 

it sets the highest risk-taking burden, mini-  

 
 

Table 15: Cornish-Fisher quantile statistics 

-1
p –2.3263 

Skewness (1) 0.0115 

Excess kurtosis (2) 3.6379 

CF quantile (CF-1
p) –3.1683 

 

 
 

 
 

mising both potential risks and rewards. 
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Figure 25: Filtered Historical Simulation VaR
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Mongolian stock market during the analysed 

period would have been better off adopting 

a conservative model, such as CF, during 

the turbulent period from mid 2008 to mid 

2010 and an in-between one before and af-

ter. In the near future, we suggest to keep 

going on with one of the following: standard-

ised t, EVT or FHS, and with GARCH-VT or 

an analogous model for conditional volatility. 

We advise to switch back to conservative if 

market conditions deteriorate. 

Backtesting Value at Risk 

Backtesting allows to check whether the mo-

del used to compute VaR is adequate, given 

the data. The procedure counts the number 

of exceptions (days in which the return was 

lower than VaR), checks if this number is 

consistent with the theoretical value (the sig-

nificance level) and, if the actual number of 

exceptions is higher than the predicted one, 

uses a Chi-squared test to decide if the mo-

del is still adequate given the data. 

We backtest three VaR models, Gaussian, 

Standardised t, and EVT, with GARCH-VT 

conditional volatility, at 1% significance lev-

el. We perform three tests: unconditional co-

verage, independence, and conditional co-

verage. The first, unconditional coverage 

(UC), checks if the fractions of violations 

coming from a particular VaR model () is 

seriously different from the theoretical frac-

tion (p). The second, independence (I), tests 

if the violations are clustered, i.e., the likeli-

hood that a violation will occur tomorrow, 

given that today it did as well. If risk manag-

ers can predict an exception based on to-

day’s outcome, the VaR model is not satis-

factory and should be rejected. The cluster-

ing hypothesis is tested by counting the 

number of 00 (no violation, followed by no  

Table 16: Gaussian GARCH-VT VaR Backtesting 

Hit = 0 2283 

Hit = 1 37 

00 sequence 2246 

01 sequence 36 

10 sequence 36 

11 sequence 1 

Unconditional Coverage 

 1.59% 

L() 3.63E-83 

p 1.00% 

L(p) 1.08E-84 

Unconditional Coverage 7.0237 

Reject VaR model? REJECT 

Independence 

01 1.58% 

11 2.70% 

L(1) 4.17E-83 

Independence 0.2763 

Reject VaR model? DO NOT REJECT 

Conditional Coverage 

Conditional Coverage 7.3000 

Reject VaR model? REJECT 

 

Table 17: Std. t4.13 GARCH-VT VaR Backtesting 

Hit = 0 2296 

Hit = 1 24 

00 sequence 2271 

01 sequence 24 

10 sequence 24 

11 sequence 0 

Unconditional Coverage 

 1.03% 

L() 9.65E-59 

p 1.00% 

L(p) 9.51E-59 

Unconditional Coverage 0.0276 

Reject VaR model? DO NOT REJECT 

Independence 

01 1.05% 

11 0.00% 

L(1) 1.25E-58 

Independence 0.5228 

Reject VaR model? DO NOT REJECT 

Conditional Coverage 

Conditional Coverage 0.5503 

Reject VaR model? DO NOT REJECT 
 

 
violation), 01 (no violation-violation) and 10 

(violation-no violation) items in the sample. 
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The last, conditional coverage (CC), jointly 

tests for the above: if the number of excep-

tions is consistent with predictions, and if the 

exceptions are independent. All tests are 

distributed according to a Chi-squared with 

one degree of freedom. We set significance 

level to 5% (3.84). If at least one statistic is 

above the critical value we reject the VaR 

model; else, we do not. 

As expected, the Gaussian VaR model per-

forms poorly (Table 16). The number of viola-

tions is statistically significant (1.59%), al-

though they do not cluster. Overall, we reject 

the Gaussian VaR model as too inaccurate. 

The standardised t and EVT VaR models, 

instead, perform similarly and nicely. The 

former is more precise, with a smaller num-

ber of exceptions in the period (1.03%) al-

most in line with the predicted value (Table 

17), even though the latter is still completely 

satisfactory (Table 18). 

We also include graphs of VaR exceed-

ances. Gaussian VaR (Figure 28) often un-

derestimates the amount of daily resources 

to set apart to cover potential losses. The re-

sult is a series of short, but frequent (37) bars 

in the graph. Standardised t VaR (Figure 29) 

and EVT VaR (Figure 30) promptly react to 

current market conditions, generally predict-

ing the right amount of capital to keep and 

giving rise to a much lower number of viola-

tions (respectively, 24 and 28). 

Out-of-sample forecast 

We now incorporate the GARCH-VT condi-

tional volatility model in simulation tech-

niques to predict the level of VaR for the out-

of-sample trading month December 1-29, 

2016. We run FHS, and introduce Monte 

Carlo, a computational algorithm that uses 

repeated random sampling to generate  

Table 18: EVT GARCH-VT VaR Backtesting 

Hit = 0 2292 

Hit = 1 28 

00 sequence 2263 

01 sequence 28 

10 sequence 28 

11 sequence 0 

Unconditional Coverage 

 1.21% 

L() 1.59E-66 

p 1.00% 

L(p) 9.91E-67 

Unconditional Coverage 0.9410 

Reject VaR model? DO NOT REJECT 

Independence 

01 1.22% 

11 0.00% 

L(1) 2.26E-66 

Independence 0.7087 

Reject VaR model? DO NOT REJECT 

Conditional Coverage 

Conditional Coverage 1.6497 

Reject VaR model? DO NOT REJECT 
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Figure 28: Gaussian GARCH-VT
VaR Exceedances
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fresh scenarios. MC requires that a distribu-

tion be specified in advance, so we opt for 

two: the Gaussian and the standardised t. 

We run 10,000 simulations for each trading 

day. FHS assumes that the historical distri-

bution of TOP-20 Index returns is a valid 

proxy for the future, and randomly extracts, 

with replacement, observations from the da-

ta available, using an index based on dis-

crete random variables generated before-

hand. The steps are the following: 

1. We create 21 series of 10,000 dis-

crete RV in the closed interval [1, 

sample size]. Each series represents 

a day, each RV the index of a parti-

cular scenario (one of the TOP-20 

daily returns in the sample). 

2. From the sample of historical 

GARCH-VT shocks, we extract the 

ones whose indices correspond to 

the discrete numbers included in the 

first series. 

3. We multiply each shock by the level 

of volatility predicted for the day, to 

obtain a series of simulated returns. 

4. We calculate the vector of GARCH-

VT conditional variances using the 

squared simulated returns and the 

predicted level of volatility (with , , 

and  already estimated). 

5. We repeat each step 21 times, then 

aggregate the figures to obtain a se-

ries of 21-day cumulative returns. 

6. We provide the 21-day VaR, as well 

as the term-structure of VaR for the 

period. 

Continuous sampling from the limited a-

mount of data available produces oscillating 

statistics for the resulting distributions of 

returns, even for as many as 10,000 scenari-

os (Table 19). Mean and variance are gener- 

 
 

Table 19: FHS GARCH-VT statistics 

No. simulations 10,000 

Mean –0.6225% 

Variance 0.2793% 

Standard Deviation 5.2846% 

Skewness –0.0546 

Excess Kurtosis 6.0962 

Simulated 21-day VaR 13.99% 
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Figure 30: EVT GARCH-VT
VaR Exceedances
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Figure 31: FHS GARCH-VT
Distribution of 21-day Returns

Relative Frequency Gaussian pdf
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ally stable, but skewness and excess kur-

tosis greatly vary: the former swings from 

negative to mildly positive, the latter is in the 

range [1,6], with rare peaks above 10. The 

reason is the overrepresentation of extreme 

events in some simulations, as in the case 

presented. This issue is visible in the histo-

gram, on which we imposed the Gaussian 

density (Figure 31). 

We predicted maximum aggregated loss, for 

the 21-day period, to be equal to 13.99%, on 

average, at 99% confidence level. Market 

conditions were good in the period, with the 

highest one-day loss being 1.41% on De-

cember 2. Overall, FHS VaR was adequate 

at covering potential losses even if, at times, 

a bit expensive (Figure 32 – a negative val-

ue represents a gain, or negative loss). 

As opposed to FHS, which draws from his-

torical data, Monte Carlo generates new, hy-

pothetical scenarios from a predetermined 

density. We run two simulations under the 

assumptions that returns are, respectively, 

normally and t distributed. The steps for the 

former are the following: 

1. We create 21 series of 10,000 stan-

dard Normal RV. The latter are as-

sumed to be random shocks (stan-

dardised returns). 

2. We calculate the vector of returns 

one day ahead by multiplying the first 

set of variables with the most recent 

GARCH-VT figure. 

3. We build the vector of GARCH-VT 

conditional variances using the 

squared simulated returns and the 

predicted level of volatility. 

4. We repeat each step 21 times, then 

aggregate the figures to obtain a se-

ries of 21-day cumulative returns. 

5. We provide the 21-day VaR, as well 

as the term-structure of VaR for the 

period. 

Table 20: MCS Gaussian GARCH-VT statistics 

No. simulations 10,000 

Mean –0.0300% 

Variance 0.2843% 

Standard Deviation 5.3320% 

Skewness –0.0012 

Excess Kurtosis 1.3445 

Simulated 21-day VaR 13.49% 
 

 
 

 
 

With 10,000 scenarios, MC generated data 

is very close to being normally distributed. 

Simulated 21-day return variance is in line 

with its theoretical value, one-day variance 

multiplied by 21 (equivalently, standard de-

viation multiplied by the square root of 21); 

skewness and excess kurtosis are very 

close to zero. All figures are stable in repeat-

ed experiments. The mean, instead, is found 

to oscillate between negative and positive 

values, but the statistic is not too meaningful, 

as it is still overwhelmed by the standard 

deviation (Table 20). Data behaviour is ap-
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Figure 33: Gaussian GARCH-VT Monte
Carlo Distribution of 21-day Returns

Relative Frequency Gaussian pdf
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Figure 34: MCS Gaussian Term Structure
of VaR and Loss Coverage
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parent in the histogram, with the Gaussian 

density superimposed (Figure 33). 

We found maximum aggregated loss for the 

21-day period to be equal to 13.49%, on a-

verage, at 99% confidence level. The sta-

tistic is inferior to the one predicted for FHS, 

as expected: the Gaussian density under-

estimates the probability of extreme nega-

tive events. Overall, given normal market 

conditions in the period, MC simulated 

Gaussian VaR was enough to face actual 

losses (Figure 34). MCS under the assump-

tion of Standardised t shocks follows a simi-

lar process, apart from step 1 which we mo-

dify as follows: 

1. Generate 21 sets of 10,000 standard-

ised t4.13 RV. The variables are still 

assumed to be random shocks. 

The resulting sample of aggregated returns 

has values of skewness and excess kurtosis 

higher, in magnitude, than in the previous 

case (Table 21). These statistics oscillate, al-

though they are, on average, in line with ex-

pectations. Assuming that shocks are dis-

tributed according to t gives a better repre-

sentation of extreme events, as it is visible in 

the histogram of returns (Figure 35). We 

superimposed both the standardised t4.13 

and the Normal densities, to show that the 

former captures fat tail events, the latter 

does not. As a consequence, the predicted 

level of aggregated VaR for the period was 

higher at 13.84%. Overall, MC simulated t4.13 

VaR was adequate at capturing potential 

losses throughout the trading month (Figure 

36). At times, we found it to be quite expen-

sive, although the total amount of resources 

to set apart in the period was reasonable. 

Expected Shortfall 

VaR has become the industry standard for 

risk reporting because it is intuitive and it  

Table 21: MCS Std. t4.13 GARCH-VT statistics 

No. simulations 10,000 

Degrees of freedom 4.13 

Mean 0.0071% 

Variance 0.2842% 

Standard Deviation 5.3312% 

Skewness –0.1707 

Excess Kurtosis 5.9422 

Simulated 21-day VaR 13.84% 
 

 
 

 
 
can be applied to all types of securities, in-

cluding complex portfolios [2]. However, this 

measure is only concerned with the percent-

age of losses that exceed its value, and not 

the magnitude of these losses. Expected 

shortfall (ES) reveals the value of tomorrow’s 

loss, conditional on it being worse than the 

VaR. It is an average of all the sorted losses 

above a predefined confidence level. We 

present 21-day ES for the three simulation 

methodologies above, at 99% confidence 

level (Table 22). The different treatment of 
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Figure 35: Standardised t4.13 GARCH-VT
Monte Carlo Distribution of 21-day Returns

Relative Frequency Standardised t pdf Gaussian pdf
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the tails by the three distributions, not so 

clear-cut when we considered VaR, is ap-

parent with ES. The Gaussian severely un-

derestimates the probability of extreme e-

vents, with the likely consequence of not 

having enough resources to face the actual 

losses throughout the period. The t4.13 distri-

bution, by contrast, is correct in giving a 

higher weight to the likelihood of crashes. 

FHS is in-between. 

We also compare the term structures of ES 

for the three (Figure 37). 

Is TOP-20 Index a good investment? 

We further inspect the distributions of simu-

lated 21-day returns to test whether adding 

TOP-20 Index to a portfolio of securities is 

beneficial, in terms of risk and reward in-

volved. We first check which percentage of 

simulated returns falls within the positive and 

negative regions. This step is particularly 

meaningful for FHS, whose distribution is 

highly asymmetric due to continuous resam-

pling from a limited amount of data; for the 

other methods, we expect returns to be e-

qually divided between the areas, a conse-

quence of both the symmetric nature of the 

densities and given the large number of sce-

narios generated (10,000), the central limit 

theorem. We then calculate the frequency of 

observations falling beyond a large return 

band, ±10%, the so-called extreme events, 

and find the two expectations of returns con-

ditional on being outside the band. We finally 

locate the realised, 21-day OOS return, in 

each distribution, and check how it ranks, 

compared to others. 

Each simulation model requires to set a be-

ginning level of conditional variance for the 

computation of shocks on day one. We bet 

on a future rise in volatility, and apply multi-

plier 2.0 to the most recent figure for condi-

tional variance (estimated on November 30,  

Table 22: 21-day simulated Expected Shortfall, % 

FHS GARCH-VT 18.91 

MC Gaussian GARCH-VT 16.44 

MC t4.13 GARCH-VT 19.48 
 

 
 

Table 23: FHS distribution inspection, % 

Neg./pos. return frequency 56.48; 43.52 

Freq. returns beyond ±10 5.64; 4.04 

Conditional expectations –14.39; 14.56 
 

Table 24: MCS Gaussian distribution inspection, % 

Neg./pos. return frequency 50.23; 49.77 

Freq. returns beyond ±10 5.41; 5.09 

Conditional expectations –13.69; 13.77 
 

Table 25: MCS Std. t4.13 distribution inspection, % 

Neg./pos. return frequency 49.97; 50.03 

Freq. returns beyond ±10 4.30; 4.53 

Conditional expectations –15.06; 14.64 
 

2016) to obtain input value 0.0201% (1.42% 

conditional volatility). This increased varia-

bility also accounts for fatter tails, and it is a 

conservative estimate of the likelihood of ex-

treme events.  

About 56.5% of FHS-simulated data are neg-

ative, the remainder positive (Table 23). Al-

so, approximately 5.6% of the observations 

fall below the ±10% band, 4% above. How-

ever, the expectation of returns conditional 

on being below –10% is lower than that of re-   

turns conditional on being above 10%. All 

these features are a likely consequence of 

the right skewness of the empirical distribu-

tion, preserved by FHS. 
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MC simulated data are almost equally distri-

buted between negative and positive, as ex-

pected. Interestingly, in this particular ex-

periment the percentage of returns falling 

beyond the ±10% band is higher under the 

assumption of Gaussian density (Table 24) 

than under that of Standardised t (Table 25). 

However, the expectations of returns condi-

tional on being extreme are much higher, in 

magnitude, for the latter case. 

We found the OOS, 21-day return, to be e-

qual to 12.41%, an exceptionally high value 

which reflects a period of intense trading on 

the Mongolian stock market, with fast appre-

ciation of TOP-20 Index. 

In the distribution of historical aggregate re-

turns, this figure lies on the 93rd percentile, 

with 160 out of 2300 observations above it 

(Table 26). The rank is high, although most 

likely downward biased, since the empirical 

distribution does not adequately reflect the 

strong decline in volatility that occurred after 

mid 2011 (Figure 38). In the other cases, the 

return lies above the 97th percentile, a da-

tum we think reasonable. 

Overall, we believe the frequency of nega-

tive returns to be slightly higher than that of 

positive ones. However, the majority of them 

is very small in magnitude. Moreover, given 

the predicted upsurge in volatility, we deem 

the likelihood of extreme events (both posi-

tive and negative) to be approximately 10%, 

with an expected gain or loss, in case an ex-

treme event takes place, of ±14.5% (con-

servative estimate). Within the context of a 

well-diversified portfolio, we think TOP-20 in-

dex makes a good investment opportunity. 

Derivatives 

We conclude this study with a section on 

derivatives. There exists no traded contract 

on TOP-20 Index, so it is not possible to 

make a detailed analysis on the subject. We 

just provide theoretical prices for European  

Table 26: OOS return distribution ranks, % 

OOS 21-day return 12.41 

Empirical percentile 93.04 

FHS percentile 97.81 

MCS Gaussian percentile 97.39 

MCS t4.13 percentile 97.53 
 

 
 

Table 27: TOP-20 EU options parameters 

S0 MNT 12,456.06 

K ∈ [8,000; 16,000] 

 ∈ [3m, 6m, 9m, 12m] 

 (annualised) 25.74% 

Current exchange rate 1.00 EUR : 2,601.53 MNT 
 

options using the Black-Scholes-Merton 

(BSM) formula. We price the contracts in 

euro, using the most recent exchange rate 

(December 30, 2016). Theoretical call and 

put prices are fully specified, in absence of 

dividends on the index, by the following pa-

rameters: current underlying price (S0), 

strike (K), time to maturity (), volatility (), in-

terest rate (r). We include values for all but 

the last one in a chart (Table 27), and pro-

vide the term structure of interest rates, up-

dated with figures from the latest bond is-

sue (December 23) separately (Figure 39). 

Annualised volatility is calculated as the 

square root of the product between the most 

recent level of GARCH-VT conditional vari-

ance (0.0182%, as of December 29) and 

365, the number of calendar days in a year 

for option valuation. 

We compute call prices using the BSM for-

mula, and derive put prices via put-call pari-
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ty. We plot the results in terms of money-

ness, the ratio between the most recent in-

dex level and the strike, for all strikes in the  

range [8,000; 16,000], with steps of 50 MNT. 

Fairly typical option patterns emerge. Calls 

(Figure 40) become more valuable not only 

when strike price is lower (equivalently, mon-

eyness is higher), but also when maturity in-

creases. The latter is the joint effect of a high 

level of predicted volatility, which allows for 

greater swings in the underlying price when 

more time is given (but with limited downside 

risk) and of a generally upward sloping inter-

est rate curve, which applies a greater dis-

count to the strike to pay for longer maturi-

ties. Puts (Figure 41), instead,  become more 

expensive both when the strike is higher 

(equivalently, moneyness decreases) and 

when maturity either lengthens (for near-the-

money contracts) or shortens (for far-in-the-

money ones). NTM contracts profit from a 

higher  because of the greater likelihood 

that the option will become in-the-money in 

the future; far ITM instruments profit from a 

lower  because the passing of time might 

make the contract less attractive than it is at 

the moment. In addition, a generally upward 

sloping interest rate curve makes shorter 

maturity instruments more valuable, due to 

the lower discount applied to the strike price 

to be received. 

We valued call contracts in the range 38.14 

MNT (K = 16,000;  = 3m) to 5,732.58 MNT 

(K = 8,000;  = 12m), about € 0.01 to € 2.20, 

and put contract in the range 0.02 MNT (K= 

8,000;  = 3m) to 2,925.26 MNT (K = 16,000; 

 = 3m), about € 0.00 to € 1.12). 

We also provide theoretical prices for at-the-

money options (moneyness = 1.00), in euro 

(Table 28). 

 
 

 
 

 
 

Table 28: TOP-20 ATM option prices (EUR) 

 EU Call EU Put 

3-m 0.35 0.15 

6-m 0.57 0.17 

9-m 0.75 0.17 

12-m 0.93 0.17 
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Conclusion 

We presented a detailed risk assessment of 

TOP-20 Index, the main indicator of the Mon-

golian Stock Market. We showed that the in-

dex exhibits strong non-normality features, 

in terms of right skewness (higher frequency 

of large positive, rather than large negative, 

returns) and visible excess kurtosis (fat tails, 

thin shoulders, high peak), which hinder the 

ability to forecast. 

To improve predictabily, we found GARCH-

VT to be the most accurate to model condi-

tional volatility, Standardised t and EVT to 

offer the best fit for the empirical distribution 

of returns. 

To monitor daily risk, we suggested Stan-

dardised t, EVT (both passed backtesting) 

or FHS VaR/ES, and advised to switch to CF 

(a very conservative measure) if market con-

ditions deteriorate. All methods are gener-

ally useful to gauge the right amount of re-

sources to set apart to face potential losses. 

To model the distribution of returns one 

month ahead (21 trading days), we think the 

best course of action is to combine FHS, an-

chored to the past, with Monte Carlo Stan-

dardised t, forward looking, both paired with 

GARCH-VT. It is always good to have more 

points of view. 

We believe FHS gives a clearer picture of the 

frequency of both negative and positive 21-

day returns in the distribution (about 55% to 

45%), and estimate the likelihood of events 

beyond the ±10% return band at 10%, e-

qually allocated, with an expected gain or 

loss, conditional on the occurrence of such 

events, of ±14.5%. The results might be con-

servative, and reflect our view of a sudden 

increase in volatility, which translated into a 

conditional variance multiplier of 2.0 at the 

time the simulation took place. In case there  

 

are no views on the future direction of volatili-

ty, we suggest to simply use the most recent 

level of conditional variance available, with 

no multiplier. 

Although no derivative contract on TOP-20 

Index exists yet, we provided theoretical call 

and put option prices. We found calls would 

sell in the range € 0.01 to € 2.30 (MNT 40 to 

MNT 6,000), with at-the-money options bet-

ween € 0.30 and € 1.00, and put would sell 

in the range € 0.00 to € 1.15 (MNT 0 to MNT 

3,000), with at-the-money contracts around 

€ 0.15 - € 0.20. 

Overall, given the recent upsurge in volatili-

ty, the higher likelihood of extreme positive, 

as opposed to extreme negative, events, 

and the availability of efficient risk monitoring 

techniques, we consider TOP-20 Index a 

good investment opportunity, in the context 

of a well-diversified portfolio. 

 

The report is made for Standard Investment 

LLC by Federico M. Massari, a long distant 

volunteer risk analyst, using the sources pro-

vided. 

_______________ 
 

* All data from mse.mn. We modified the value of the 

close price recorded on August 13, 2010 from MNT 

11,145.50 to MNT 10,145.50; the previous datum was 

most likely an outlier resulting from transcription error. 
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Additional Sources 

a en.wikipedia.org/wiki/Mongolian_Stock_Exchange 
b apu.mn/about-us 
c baganuurmine.mn 
d bayangolhotel.mn 
e ubbuk.mn 
f company.gobi.mn/en/about-us/ 
g genco-tour.mn 
h mtcone.net 
i materialimpex.mn 
j mik.mn/en/m25 
k mongolpost.mn/more/71 
l merex.mn/en/page/intro 
m nekhii.mn/en/about-us 
n remicon.mn 
o sharyngol.mn/our-company 
p mongolmilk.mn/eng/pages/introduction 
q talkh-chikher.mn/v/4 
r tavantolgoi.mn/p/4 
s nomin.mn/en/c/48 
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