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Mongolia’s TOP-20 Index Risk Analysis, Pt. 2 

Federico M. Massari 

March 3, 2017 

In the second part of our risk report on TOP-20 Index, Mongolia’s main stock mar-

ket indicator, we refine the models introduced in part one, accounting for several 

important features of the Mongolian stock market – most notably, positive skew-

ness and negative leverage – and demonstrate why the index makes a very nice 

investment opportunity at the moment.

Overview 

In part two of our risk report on TOP-20 Index 

we improve1 the quality of the return forecast 

accounting for some non-normality features 

that remained after previous model calibra-

tion [4]. 

Non-normality (or non-Gaussianity) is a con-

dition that prevents returns from being ade-

quately described by the Gaussian density – 

the bell-shaped distribution –, making them 

difficult to forecast. 

The most visible departures of TOP-20 Index 

from normality are the autocorrelation of both 

log and squared returns, the volatility clus-

tering, the positive skewness/negative lever-

age effect, and the positive and large ex-

cess kurtosis. 

We already discussed these features in part 

one, where we mostly relied on visual explo-

ration of data, inspecting the empirical distri-

bution of returns, as well as the plots of the 

autocorrelograms of both logs and squares. 

This time, we want to formalise the previous 

intuitions, performing tests of normality, au-

tocorrelation, volatility clustering, and asym-

metry. 

Once we confirm that TOP-20 Index returns  

                                                           
1 Unless otherwise specified, all the techniques implement-
ed come from [1], which we closely followed. 

 

are non-Gaussian, we improve the GARCH-

VT standardised t distribution model we re-

lied on in past reports, starting from non-lin-

ear extensions of GARCH, then reconsider-

ing the validity of the asymmetric t distribu-

tion. The fit we obtain in the end is visibly bet-

ter, at least in the left tail. 

In the last part of this work, we provide a one-

month ahead forecast of the distribution of 

returns, together with measures of Value at 

Risk and Expected Shortfall. 

Data 

We use TOP-20 Index daily log returns* from 

August 13, 2007 to February 24, 2017. They 

are price returns (they only reflect capital ap-

preciation and disregard dividends), gross 

of fees, expenses, and taxes. 

We point out that, under a six-month renewal 

policy, the list of TOP-20 Index constituents 

slightly changed recently, with the removal 

of three companies (Genco Tour Bureau, 

Mik Holdings and Telecom Mongolia) and 

the inclusion of three others (Hermes Center, 

Khukh Gan and Aduun Chuluun). See [6] for 

additional information. 
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Stylised facts of TOP-20 Index returns 

We present a list of empirical findings which 

are distinctive of TOP-20 Index, and which 

should be captured to the greatest extent to 

improve the quality of the return forecast. 

Autocorrelation of log returns 

This feature refers to the predictive power of 

past log returns (or residuals: demeaned re-

turns) on today’s one. Usually, at daily level, 

the autocorrelation of log returns should be 

close to zero, implying absence of predicta-

bility based on past data. However, TOP-20 

returns do exhibit some linear dependence 

with their own history up to several weeks, 

an anomaly we connected to the thin trade, 

or scarce liquidity, of some of the index con-

stituents. In addition, the sign and strength 

of this relationship vary in time (Figure 1). 

We managed to capture this feature in full, 

using a GARCH filter. 

Autocorrelation of squared returns and 

volatility clustering 

The first refers to the ability of past squared 

returns to predict, to a certain extent, both 

the direction and the size of future squared 

returns. The second is the tendency of high 

(low) volatility days to be followed by days of 

similar intensity. Since squared returns are a 

valid proxy for variance, the presence of au-

tocorrelation in squares also implies volatility 

clustering. These phenomena, very common 

in most equity markets even at daily level, 

became less significant in Mongolia after A-

pril 8, 2011 (Figure 2), the day in which an 

agreement between MSE and London Stock 

Exchange to bring the infrastructure, techno-

logy, and human resources of the Mongolian 

partner to international standards reduced 

market uncertainty, cutting volatility to one  

 
 

 
 

third of its initial value, and lowering both the 

frequency and the magnitude of extreme re-

turns [5]. 

We also managed to capture these phenom-

ena in full, using a GARCH filter. 

Positive skewness and the negative 

leverage effect 

Positive skewness refers to an asymmetry in 

the distribution of returns which makes small 

losses, as well as extreme gains, more freq-

uent than, respectively, small gains and ex-

treme losses. Negative leverage exists when 

positive returns boost variance (a proxy for 

risk) more than negative returns of the same 

size do, and it is the opposite of the so-called 

leverage effect, named after the fact that a 

decrease in the value of a company’s equity 

provokes an increase in financial leverage 
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Figure 1: Time-varying autocorrelation of
log returns (lag 1), rolling-window 6m
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Figure 2: Time-varying volatility (standard 
deviation), rolling-window 6m
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(the debt-to-equity ratio), making the full re-

payment of debt uncertain and the firm more 

risky. Positive skewness and negative lever-

age are two sides of the same coin: a higher 

volatility of positive returns implies a greater 

dispersion of gains, with extreme gains both 

more likely and larger than extreme losses; 

a lower volatility of negative returns signifies 

a greater concentration of losses, with small 

losses both more frequent and closer to zero 

than small gains. 

Although not rare in developing economies, 

these two features are considered anoma-

lies, since most equity indices are charac-

terised by the opposite phenomena: a high-

er frequency of small gains and, occasional-

ly, big crashes. However, as they make large 

profits more likely, they are nice anomalies, 

and investors like them so much that they 

«may be willing to accept negative expect-

ed return in the presence of large, positive 

skewness [and negative leverage]»a. For in-

stance, when we analysed monthly returns 

of TOP-20 Index mimicking portfolios [5], we 

concluded that, thanks to a combination of 

rising markets, positive skewness, and high 

kurtosis, the index makes a good investment 

opportunity at the moment, in spite of an av-

erage return, in the most recent five years, a-

round –0.75%. 

The simultaneous existence of negative av-

erage return and positive skewness/nega-

tive leverage is indeed an interesting pheno-

menon of TOP-20 Index. Considering rolling 

subsamples of six-month length, we see that 

skewness stayed positive about 75% of the 

times over the past ten years and, in the last 

five, only on very few occasions it dropped 

below zero (Figure 3). By contrast, mean re-

turn was negative about 55% of the times, of-

ten during periods of positive skewness (Fig- 

 
 

 
 

Table 1: Odd order moments, rolling-window 6m 

 Negative Positive 

Mean 55.9% 44.1% 

Skewness 24.4% 75.6% 

Avg. mean (range) 0.00% (–0.54%; 0.89%) 

Avg. skewness (range) 0.20 (–3.14; 1.67) 
 

ure 4), although its value was so small on av-

erage that it could have been forgone in view 

of the better chance to greatly profit from the 

position (Table 1). 

The prevalence of an asymmetry of TOP-20 

Index towards large gains indicates that the 

public react to positive news more than they 

do to negative news. In other words, inves-

tors are not as scared after negative events 

as they are excited after positive ones. Un-

der these circumstances, it is possible to 

make good use of traditionally disliked even 

moments, variance and kurtosis, as well as 
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Figure 3: Time-varying skewness,
rolling-window 6m
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Figure 4: Time-varying mean,
rolling-window 6m
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the strongly positive autocorrelation in log 

returns: a higher volatility of gains, combined 

with fatter tails and return clustering may be 

beneficial when the market is strong, even in 

presence of negative average return. 

“ Investors are not as scared 
after negative events as they 

are excited after positive ones. „ 

Incorporating positive skewness and nega-

tive leverage in forecasting models is of par-

amount importance to improve the accuracy 

of predictions, and it is the primary focus of 

this work. Obviously, we could not account 

for these features in full using GARCH and 

the standardised t distribution, because they 

are symmetric models. We will come back to 

this point in a while, after introducing non-

linear GARCH models and the concept of 

news impact curve. 

Positive excess kurtosis 

In part one of this risk report we showed that 

the distribution of TOP-20 Index returns has  

positive excess kurtosis. Kurtosis is a shape 

parameter that measures the tail thickness of 

a distribution: the larger its value, the thicker 

the tails, and the higher the frequency of ex-

treme events. Any kurtosis above 3, the val-

ue for the Gaussian density, is called posi-

tive excess kurtosis, and it is a synonym for 

fat tails. Investors usually dislike this param-

eter, which is associated to the higher likeli-

hood of market crashes. However, if the re-

turn distribution is positively skewed, excess 

kurtosis may be beneficial because it ampli-

fies gains more than it does losses. Over the 

whole ten-year period, excess kurtosis has 

always been positive (although, on average, 

not too large) and frequently clustered. 

We managed to capture much of the excess  

 

 
kurtosis with the GARCH standardised t mo-

del, and we now consider refining our proxy. 

We surveyed the most important features of 

TOP-20 Index: the autocorrelation of log and 

squared returns, volatility clustering, positive 

skewness and the negative leverage effect, 

positive excess kurtosis. While it is useful to 

model all features to the greatest extent, we 

point out that their relative importance might 

vary in time, together with the development 

of the Mongolian stock exchange. 

Tests 

We now test the following assumptions: nor-

mality, absence of autocorrelation, absence 

of volatility clustering (no ARCH effect), ab-

sence of asymmetry in the distribution of re-

turns. 

Normality tests 

When we previously questioned the normali-

ty assumption, we did so mainly relying on 

visual tools, such as the histogram of returns 

and the autocorrelograms (the plots of auto-

correlation functions) of logs and squares. 

This time, we formally test the null hypothesis 

that TOP-20 Index log returns come from a 

Gaussian density against the alternative that 

they do not: 
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Figure 5: Time-varying excess kurtosis,
rolling-window 6m
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H0 : Log returns are Gaussian distributed  

H1 : Log returns are non-Gaussian 

We perform two normality tests. The first one, 

the Jarque-Bera test, checks whether the 

higher moments of the empirical distribution 

of returns, skewness and excess kurtosis, 

are jointly zero, as they are in the Gaussian 

density. If they are not, we reject the normali-

ty assumption. The JB statistic is distributed 

according to a chi-squared density with two 

degrees of freedom (at least two observa-

tions are needed in order to find two param-

eters – only in this case a solution exists for 

two equations in two unknowns). 

The second one is a variation of the Kolmo-

gorov-Smirnov test due to Lilliefors. The KS 

test verifies whether the greatest distance 

between the empirical CDF and the theoreti-

cal, Gaussian CDF is within the limits (so that 

we can reasonably say the data come from 

a normal density). If it is not, we reject the 

normality assumption. The Gaussian CDF to 

which the empirical distribution is compared 

requires knowledge of the population mean 

and standard deviation, two unobserved pa-

rameters. The Lilliefors test simply replaces 

the unknown values with the estimated, sam-

ple moments. Basically, what changes are 

the tabulated critical values. 

The Jarque-Bera statistic we obtain is well a-

bove the critical value at a significance level 

of 1% (the p-value, the minimum threshold at 

which it is possible to reject the null hypothe-

sis, is practically zero), and it confirms our 

previous intuition (Table 2). 

The maximum distance between the empiri-

cal and the Gaussian distributions is 9.86%, 

also well above the one allowed: the tabulat-

ed critical value for the Lilliefors test,  = 1%, 

is 1.031/√sample size ≈ 2.11% < 9.86% (Ta-

ble 3, Figure 6). 

Table 2: Jarque-Bera test of normality, =0.01 

Sample skewness 0.2666 

Sample excess kurtosis 11.7589 

Jarque-Bera statistic 13,746.01 

Critical value 9.21 

Reject normality hypothesis? YES 
 

Table 3: Lilliefors test of normality, =0.01 

Maximum distance 9.86% 

Maximum distance allowed 2.11% 

Reject normality hypothesis? YES 
 

 
 

In this case, too, we reject the normality as-

sumption. 

Hence, we formally reject H0, the null hypo-

thesis of Gaussian distributed log returns, in 

favour of H1, the alternative hypothesis of 

non-normal log returns. 

Autocorrelation tests 

After inspection of the autocorrelation func-

tions, we also concluded that TOP-20 Index 

returns, as well as their squares, were visibly 

correlated with past values at several lags of 

data (even weeks). We formally check for the 

presence of autocorrelation using the Ljung-

Box test. LB tests the null hypothesis that the 

autocorrelation coefficients for both log and 

squared returns are zero at all lags, against 

the alternative that at least one of them is dif-

ferent from zero. The analysis is performed 

on residuals (demeaned log returns) and on  

Max distance: 9.86%
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squared residuals: 

H0 : Residuals/squared residuals are non-

correlated to their past values at all lags 

H1 : Residuals/squared residuals are cor-

related to at least one of their past values 

We use 20 lags of past data, the value sug-

gested by Ljung and Box. Testing at differ-

ent lags (10, 50, 100) leads to the same con-

clusion. 

The autocorrelation of log returns is strong. 

At 1% significance, the LB statistic is 445.92, 

well above 37.57, the critical value from a 

chi-squared distribution with 20 degrees of 

freedom (Table 4). As we previously pointed 

out, this is an anomaly which may be related 

to the thin trade of some of the index constit-

uents. 

The autocorrelation of squared returns is e-

ven stronger. The LB statistic is larger at all 

lags, and equal to 507.34 at 20. 

Hence, we formally reject H0, the null hypoth-

esis of absence of correlation of log returns 

and squared returns at all lags, in favour of 

H1, the alternative hypothesis of autocorrel-

ation in at least one lag of past data.  

ARCH effect tests 

We already hinted at the presence of volatili-

ty clustering when we performed the Ljung-

Box test on squared residuals (a proxy for 

variance) and concluded that, in agreement 

with the analysis of the autocorrelation func-

tion made in part one, squared returns are 

strongly autocorrelated up to several weeks. 

We now test the volatility clustering assump-

tion using Engle’s ARCH effect test (also val-

id for GARCH). We regress squared residu-

als against their past four values. If there is 

no ARCH effect, the coefficients of the past  

Table 4: Ljung-Box AC test, =0.01, lags=20 

LB statistic (log returns) 445.92 

LB statistic (squares) 507.34 

Critical value 37.57 

Reject absence of AC? YES 
 

Table 5: Engle’s ARCH effect test, =0.01, lags=4 

Adjusted R-squared 5.61% 

F-test (significance) 36.33 (1.65E-29) 

 Coefficient p-value Semi-partial R2 

2
t-1 0.1636 2.51E-15 2.52% 

2
t-2 0.1080 2.11E-07 1.08% 

2
t-3 0.0698 7.85E-04 0.45% 

2
t-4 0.0090 0.6605 7.66E-05 

 

squared residuals should all be zero. For-

mally, we test: 

H0 : past squared residuals do not have a-

ny predictive power over the most recent 

one (absence of ARCH effect) 

H1 : past squared residuals have predict-

ive power over the most recent one (pres-

ence of ARCH effect) 

The coefficient of determination (adjusted 

R2) tells that nearly 5.6% of the variability of 

today’s squared residual around its mean 

value is explained by the linear combination 

of past variables (Table 5). The results are 

statistically significant and did not occur by 

chance (the F-test p-value is close to zero) 

so we can safely reject the null hypothesis 

for  = 1%. 

The variables are not only significant but al-

so relevant, according to the semi-partial R2. 

A semi-partial R2 shows how much the total 

R2 of the regression increases thanks to the 

addition of a particular explanatory variable. 

In other words, it tells the specific relevance 

of a given regressor, keeping else constant. 

Including the first three lags of squared 

residuals, for instance, boosts total R2 by 

2.52%, 1.08%, and 0.45%, respectively, and 
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shows that these variables have some pre-

dictive power on the variability of today’s 

squared residual around its average. For 

example, an increase in the value of 2
t-1 by 

1 causes 2
t to go up by 0.1636 × 2.52% ≈ 

0.41%. It may be small, but it is quite satis-

factory, given the complexity of the process. 

Interestingly, while all lags greater than three 

are progressively less important in the re-

gression, so that including them does not 

add much to the overall R2, the ninth term 

has half, and the tenth term the same, pre-

dictive power as the first one: when up to ten 

lags of data are included, both the first and 

the tenth semi-partial R2 are about 1.78%, 

and the ninth about 0.87% (the spike in the 

autocorrelogram of squared returns, Figure 

6 in part one of the risk report). 

Hence, we reject H0, the null hypothesis of 

absence of ARCH effects (volatility cluster-

ing) at all lags of the squared residuals, in 

favour of H1, the alternative hypothesis of 

presence of ARCH effect in at least one pre-

vious lag of the same variable. 

Asymmetry tests 

Finally, we test for the presence of asymme-

try in the distribution of returns. Specifically, 

we want to prove that negative leverage, the 

fact that positive news boost variance more 

than negative news do, persists even after a 

GARCH fit. To do so, we rely on a slight vari-

ation of Engle and Ng’s sign and size bias 

test. We regress squared GARCH shocks 

(residuals standardised using GARCH con-

ditional volatility, then squared) on three var-

iables. The first one is a dummy that takes 

value 1 if previous day’s residual is positive 

and zero otherwise (positive sign), and it is 

useful to test whether a positive return, albeit 

small, is enough to raise volatility. The se- 

Table 6: Engle-Ng sign and size bias test, =0.01 

Adjusted R-squared 0.53% 

F-test (significance) 5.25 (1.31E-03) 

 Coefficient p-value Semi-partial R2 

Positive 
Sign Bias 

–0.2718 0.0376 0.18% 

Negative 
Size Bias 

12.1324 0.1054 0.11% 

Positive 
Size Bias 

23.7186 3.45E-04 0.54% 

 

cond and third ones are dummies that take 

value equal to that of previous day’s residual 

if it is, respectively, negative or positive, and 

zero otherwise, and they are helpful to test 

whether the size of the residual also matters. 

If the distribution of GARCH-VT shocks is 

symmetric, none of these three variables 

should have any predictive power, and their 

coefficients should be jointly null. 

Formally, we test: 

H0 : absence of asymmetry (skewness), 

absence of leverage or negative leverage 

H1 : presence of at least one of the follow-

ing: negative or positive skewness, lever-

age or negative leverage 

We already know (Table 10 in part one) that 

GARCH-VT is quite effective at reducing the 

asymmetry (skewness ≈0.01), so we do not 

expect the fit of the regression to be high. 

However, results show that there may still be 

room for improvement on the symmetric mo-

del. About 0.5% of the variability of squared 

GARCH-VT shocks is explained by the re-

gression against the variables (Table 6). The 

estimated R2 is statistically significant and it 

did not occur by chance (the F-test p-value 

is quite small) so we can safely reject the null 

hypothesis at  = 1%. Among the variables 

included in the regression, only positive size 

is both relevant and statistically significant, 

as expected: its p-value is small, so that we 
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are confident that its coefficient will not oscil-

late between negative and positive values 

(99% confidence interval: 6.66; 40.78), and 

its semi-partial R2 is quite high, with a sizea-

ble impact on the regressed variable. For in-

stance, an increase in the value of positive 

size by one should cause future squared 

shocks to go up by 23.72 × 0.54% ≈ 12.74%, 

all else constant. The presence of positive 

size bias also implies the existence of nega-

tive leverage. By contrast, positive sign and 

negative size are neither statistically signifi-

cant nor relevant. Both variables are subject 

to great estimation error, so that it is impossi-

ble to reject the null hypothesis based on 

them alone. Moreover, the positive sign co-

efficient has puzzling sign (we would expect 

positive residuals to be followed by ones of 

equal sign), although the coefficient is so 

unreliable that is may oscillate between neg-

ative and positive values (99% confidence 

interval: –0.61; 0.07). 

Hence, given both the statistical significance 

and the relevance of the positive size varia-

ble, we reject H0, the null hypothesis of ab-

sence of residual asymmetry in the distribu-

tion of GARCH-VT shocks, in favour of H1, 

the alternative hypothesis of presence of the 

following: positive skewness, negative lever-

age. 

GARCH-VT standardised t model 

Before considering asymmetric extensions, 

we briefly review the GARCH-VT standard-

ised t distribution model presented in part 

one of this risk report. GARCH-VT is a condi-

tional variance model fully specified by three 

parameters:  and , estimated via maxi-

mum likelihood (a procedure which looks for 

the values of the parameters most likely to 

have generated the sample at hand), and ,  

Table 7: GARCH-VT parameter estimation 

 (omega) 1.16E-05 

 (alpha) 0.1593 

 (beta) 0.7734 

Persistence 0.9328 

Maximised log-likelihood 9444.54 

R-squared 6.65% 

N. estimated parameters 2 

AICc –18885.08 

BIC –18873.54 
 

Table 8: GARCH-VT shocks statistics 

Mean –0.0223 

Variance 0.9986 

Standard deviation 0.9993 

Skewness 0.0294 

Excess kurtosis 3.6721 
 

Table 9: GARCH-VT standardised t parameters 

Degrees of freedom 4.08 

Maximised log-likelihood –3239.81 

N. estimated parameters 1 

AICc 6481.62 

BIC 6487.39 
 

 
 

computed using the previous two as well as 

the sample variance (variance targeting). 

The output of the model is a set of condition-

al variances useful to create shocks – stan-

dardised residuals (demeaned returns) or 

standardised returns (if the mean is approxi-

mately zero) – which are then fit to a symme-

tric density centered at the origin, the stan- 

dardised t distribution.  

We produce updated statistics to the model 

(Tables 7-9).  = 1.16E-05,  = 0.1593, and 
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Figure 7: QQ-plot of GARCH-VT shocks
against the standardised t distribution
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 = 0.7734. The goodness of fit of conditional 

variances to squared returns, the R2, is equal 

to 6.65%, in line with empirical evidence (5-

10%). Shocks have smaller higher moments 

than returns (skewness is down to 0.0294 

from 0.2666, excess kurtosis down to 3.6721 

from 11.7589) and their distribution is well-

described by a standardised t density with 

4.08 degrees of freedom (Figure 7). 

Overall, the model fully captures some non-

normality features of TOP-20 Index (autocor-

relation of log and squared returns, volatility 

clustering) and partially some others (posi-

tive skewness, negative leverage, positive 

excess kurtosis). We previously tried to mini-

mise the latter features, fitting an asymmetric 

t distribution to GARCH-VT shocks, though 

we obtained a worse result, in terms of likeli-

hood ratio: GARCH is designed to respond 

equally to negative and positive news, so it 

is best paired with a symmetric distribution. 

As the asymmetric t seems to be a powerful 

model in light of the stylised characteristics 

of TOP-20 Index, we now look for non-linear 

extensions of GARCH which can provide a 

better fit to sample data. 

Asymmetric GARCH models 

We present two popular GARCH extensions 

best suited to capture the different response 

of conditional volatility to good and bad mar-

ket news: EGARCH and GJR-GARCH. 

For ease of comparison with the previous 

model, we use variance targeting for both. 

EGARCH-VT  

EGARCHc is a model for the logarithmic vari-

ance, and it is completely specified by the 

following parameters:  and , comparable 

to  and  in GARCH, though not subject to 

the same restrictions (the only requirement  

Table 10: EGARCH-VT parameter estimation 

 (omega) –0.5392 

 (gamma) 0.2250 

 (beta) 0.9378 

 (psi) 0.0667 

Persistence 0.9378 

Maximised log-likelihood 9451.63 

R-squared 9.68% 

N. estimated parameters 3 

Likelihood ratio test, 99% 14.16 (6.63) 

Improves on GARCH-VT? YES 

AICc –18897.25 

BIC –18879.92 
 

Table 11: EGARCH-VT shocks statistics 

Mean –0.0335 

Variance 1.0280 

Standard deviation 1.0139 

Skewness –0.0556 

Excess kurtosis 3.6477 
 

Table 12: EGARCH-VT standardised t parameters 

Degrees of freedom 4.24 

Maximised log-likelihood –3277.34 

N. estimated parameters 1 

AICc 6556.69 

BIC 6562.46 
 

 

 
is  < 1), , whose value, when exponentia-

ted, is similar to that of  in GARCH, and , 

an additional variable that captures the lev-

erage (or negative leverage) effect.  is ob-

viously the most interesting parameter and, 

in EGARCH: 

 < 0 : presence of leverage effect 
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 = 0 : symmetric response to news, equiv-

alent to GARCH 
 

 > 0 : presence of negative leverage effect 

We find the optimal values of , , and  via 

maximum likelihood (MLE), then use them to 

retrieve that of  (Table 10).  = 0.2250,  = 

0.9378,  = 0.0667,  = –0.5392. A positive 

value for  implies the presence of negative 

leverage, as expected. 

Considering the regression R2, the likelihood 

ratio, and the information criteria (AICc and 

BIC), EGARCH appears to be a superior mo-

del. The R2 is about three percentage points 

higher than that of GARCH-VT, the likelihood 

ratio is positive and significant ( = 1%), and 

both AICc and BIC are smaller than those of 

the symmetric model.AICc and BIC are, res-

pectively, the Akaike Information Criterion 

corrected and the Bayesian Information Cri-

terion, two measures of the quality of a statis-

tical model relative to others, based on the 

log-likelihood function and on the number of 

estimated parameters. The best model is the 

one minimising the information criteria: basi-

cally the one with the largest value of the log-

likelihood function and the smallest number 

of parameters (lack of parsimony is penal-

ised). 

Despite the improved fit, EGARCH is not an 

entirely satisfactory model. For example, the 

skewness of the distribution of shocks is now 

negative and larger than before (–0.0550), 

while excess kurtosis is only mildly reduced 

(3.6477, down 0.67%) (Table 11). Moreover, 

the t density fit is worse than that for GARCH 

both in the symmetric (Table 12, Figure 8) 

and in the asymmetric (Table 13, Figure 9) 

cases (for asymmetric GARCH-VT, AICc = 

6465.34; BIC = 6476.89). As expected, how-

ever, EGARCH-VT asymmetric t has a better  

Table 13: EGARCH-VT asymmetric t parameters 

d1 4.20 

d2 0.08 

C 0.5196 

A 0.1137 

B 1.0030 

–A/B –0.1133 

Maximised log-likelihood –3270.59 

N. estimated parameters 2 

AICc 6545.17 

BIC 6556.72 
 

 
 

Table 14: GJR-VT parameter estimation 

 (omega) 1.07E-05 

 (alpha) 0.1955 

 (beta) 0.8022 

 (theta) –0.1194 

Persistence 0.9380 

Maximised log-likelihood 9461.39 

R-squared 8.72% 

N. estimated parameters 3 

Likelihood ratio test, 99% 33.70 (6.63) 

Improves on GARCH-VT? YES 

AICc –18916.79 

BIC –18899.46 
 

Table 15: GJR-VT shocks statistics 

Mean –0.0341 

Variance 0.9762 

Standard deviation 0.9880 

Skewness 0.0055 

Excess kurtosis 3.1453 
 

fit than its symmetric counterpart (likelihood 

ratio: 13.52; AICc: –11.52; BIC: –5.74). 

Overall, we do not believe EGARCH-VT to be 

a very good model for TOP-20 Index. 
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GJR-VT 

GJRd is an asymmetric GARCH model com-

pletely defined by the following parameters: 

, ,  (as in GARCH), and . The latter is 

the leverage parameter and, contrary to the 

EGARCH case: 

 < 0 : presence of negative leverage 
 

 = 0 : symmetric response to news 
 

 > 0 : presence of leverage 

As before, we find the optimal values for , 

, and  via maximum-likelihood estimation, 

then derive  (Table 14). The following re-

strictions apply (on top of the usual ones): 

 +  ≥ 0,  +  + 0.5  < 1 (persistence).  

= 0.1955,  = 0.8022,  = –0.1194, and  = 

1.07E-05. A negative value for  implies the 

presence of negative leverage, as expected.

The regression R2 is two percentage points 

higher than that of GARCH, although lower 

than in the EGARCH case. Yet, the likelihood 

ratio test, as well as the information criteria, 

show that GJR is a much nicer fit to the data. 

The higher moments of the shocks, for ex-

ample, are greatly reduced: in absolute val-

ue, skewness is down 81% while excess kur-

tosis 14%, compared to their previous val-

ues in GARCH (Table 15). 

The distribution of shocks is fit to both the 

symmetric (Table 16) and the asymmetric 

(Table 17) t densities. In the first case the fit 

is unsatisfactory, with shocks in the left tail 

visibly offset (Figure 10) – we tried to fit an a-

symmetric model to a symmetric distribution. 

In the second, however, the fit is excellent, 

with shocks in the left tail almost in a straight 

line (Figure 11). 

Model selection 

We go back to the model selection criteria to  

Table 16: GJR-VT standardised t parameters 

Degrees of freedom 4.09 

Maximised log-likelihood –3224.31 

N. estimated parameters 1 

AICc 6450.62 

BIC 6456.39 
 

 
 

Table 17: GJR-VT asymmetric t parameters 

d1 4.05 

d2 0.08 

C 0.5273 

A 0.1117 

B 1.0031 

–A/B –0.1114 

Maximised log-likelihood –3217.67 

N. estimated parameters 2 

AICc 6439.34 

BIC 6450.89 
 

 
 

look for the best model, among GARCH-VT, 

EGARCH-VT, and GJR-VT for TOP-20 Index. 

We recall we would like such a model to dis-

play the highest likelihood ratio, as well as  
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Figure 10: QQ-plot of GJR-VT shocks
against the standardised t distribution
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the lowest values for the information criteria. 

Conditional volatility model – In terms of like-

lihood ratios, GARCH < EGARCH < GJR. In 

terms of both AICc and BIC, the same rank-

ing applies. Winner: GJR. 

Distribution model – In terms of likelihood ra-

tios, EGARCH < GARCH < GJR. Also, sym-

metric t GJR < asymmetric t GJR. In terms of 

both AICc and BIC, the same ranking ap-

plies. Winner: asymmetric t GJR (Table 18). 

News impact curve 

We previously stated that the negative lever-

age effect is among the most important a-

nomalies of TOP-20 Index, and we verified 

its existence through the optimal values of 

the leverage parameters:  = 0.0667 (posi-

tive) and  = –0.1194 (negative). A visual re-

presentation of this interesting phenomenon 

is the news impact curve by Engle and Ngb. 

The curve analyses the impact that news, 

proxied by shocks (standardised residuals), 

have on conditional variance the next day. It 

is a parabola centered at the origin, and with 

two branches whose steepness determines 

the intensity of the reaction to such news: the 

steeper the branches, the higher the predict-

ed value of tomorrow’s conditional variance. 

The news impact curve for GARCH is sym-

metric because the model equally reacts to 

positive and negative news: what really im-

pacts on volatility is the magnitude, not the 

sign of the previous day’s shock (Figure 12). 

As a consequence, GARCH cannot capture 

the positive skewness and the negative lev-

erage of TOP-20 Index returns. By contrast, 

the curves for EGARCH and GJR are asym-

metric, with a steeper (GJR) or much steeper 

(EGARCH) right branch: what influences vol-

atility are not only the size but also the sign 

Table 18: Model selection chart 

Conditional volatility model 

 LR AICc BIC 

GARCH-VT    

EGARCH-VT    

GJR-VT ✓ ✓ ✓ 

Distribution model 

 
LR AICc BIC 

S A S A S A 

GARCH-VT       

EGARCH-VT       

GJR-VT  ✓  ✓  ✓ 
 

 
 

Table 19: News impact curve intercept 

GARCH-VT 0.000145 

EGARCH-VT 0.000144 

GJR-VT 0.000149 

 

of the previous day’s shock, and large, posi-

tive shocks have a much bigger impact. 

Depending on the values of the parameters, 

the curves are rotated, translated and ex-

panded. Rotation is dictated by the leverage 

parameters  and , translation depends on 

, , , and sample variance, and expansion 

is mainly determined by  and . Compared 

to the GARCH curve, the asymmetric ones 

are very mildly translated (Table 19), rotated 

to the left (due to the negative leverage ef-

fect), and expanded. In particular, the 

EGARCH curve develops in an exponential 

fashion, a behaviour most visible in the right 

branch of the parabola. 
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One-month ahead forecast 

We are now going to provide a one-month a-

head forecast of the distribution of TOP-20 

Index returns using the models discussed in 

this report. We pair the GJR-VT conditional 

volatility model with both filtered historical 

simulation and Monte Carlo asymmetric t. 

We generate 100,000 scenarios, and make 

no assumptions regarding the future level of 

volatility (volatility multiplier: 1.0). The current 

level, as of February 24, 2017, is  = 1.37% 

(2 = 0.00188). 

Filtered historical simulation, GJR-VT 

FHS, which we introduced in part one of this 

risk report, combines a model-based meth-

od of conditional variance with a model-free 

method of distribution [2]. Here, we assume 

that conditional variance is correctly speci-

fied by GJR-VT, and that the historical densi-

ty of TOP-20 Index returns is a valid proxy for 

the future. The steps of the process are only 

mildly changed with respect to those in part 

one: 

1. We create 21 series of 100,000 dis-

crete RV in [1, sample size]. Each se- 

ries represents a day, each RV one  

of the daily returns in the sample; 

2. From the set of GJR-VT shocks, we 

extract the ones whose indices cor-

respond to the discrete numbers in- 

cluded in the first series; 

3. We multiply each shock by the level 

of volatility predicted for the day, to 

obtain a series of simulated returns; 

4. We calculate the vector of GJR-VT 

conditional variances (with , , , 

and  already estimated) using the 

simulated squared returns and the 

predicted level of volatility; 

Table 23: FHS investment statistics, % 

No. of simulations 100,000 

Average return –0.9442 

Volatility 5.9571 

Skewness 0.4811 

Excess Kurtosis 3.8157 

Neg./pos. return frequency 59.16; 40.84 

Average if neg./pos. –4.64; 4.41 

Freq. returns beyond ±10 4.83; 3.77 

Average if beyond ±10 –13.19; 14.52 

 

 
 

Table 24: FHS monthly VaR and ES 

Value at Risk, 99% 14.78% 

Expected Shortfall, 99% 18.54% 

Portfolio Value MNT 1,000,000 

MNT Value at Risk MNT 137,399.58 

MNT Expected Shortfall MNT 169,211.38 

 

 
 

5. We repeat each step 21 times, then 

aggregate the results to obtain a se-

ries of monthly returns. 
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Figure 18: Distribution of FHS
GJR-VT monthly returns
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6. We compute monthly Value at Risk 

and Expected Shortfall, together with 

their term structures. 

The model captures several stylised facts of 

TOP-20 Index: the slightly negative mean re-

turn (–0.94%), a level of volatility in line with 

current market figures (~6%), positive skew-

ness (0.48), and positive excess kurtosis 

(3.82). Of negative leverage, it considers the 

higher frequency of losses (60-40), and the 

larger average extreme gain (~1.5% more, 

in absolute value, than the average extreme 

loss), and does not consider the higher fre-

quency of extreme gains (here, ~1% lower 

than that of extreme losses), and the smaller 

average loss (here, ~0.25% higher than the 

average gain). One month ahead Value at 

Risk, the potential loss that would only be ex-

ceeded 1% of the times in the period, is fore-

cast at 14.78% (Table 24), between 3.55% 

and 3.75% per day (Figure 19). MNT VaR is 

around MNT 137,400 for each million invest-

ed in the portfolio (~EUR 52.60). One month 

ahead Expected Shortfall, the average loss 

given that the actual return is worse than the 

VaR, is forecast at 18.54%, between 4.80% 

and 5.10% per day. MNT ES is around MNT 

169,200 per million invested, (~EUR 64.70). 

Monte Carlo simulation, GJR-VT 

asymmetric Student’s t distribution 

Monte Carlo generates new, hypothetical re-

turns from a predetermined density calibrat-

ed on sample data. We use the asymmetric 

t distribution, and assume that the condition-

al variance is correctly specified by GJR-VT. 

Due to the asymmetric nature of the density, 

we need to vary the simulation steps. Using 

the inverse transform method [3]: 

1. We create 21 sets of 100,000 uniform  

Table 25: Monte Carlo investment statistics, % 

No. of simulations 100,000 

Average return 0.0096 

Volatility 6.3085 

Skewness 0.9768 

Excess Kurtosis 16.6698 

Neg./pos. return frequency 53.15; 46.85 

Average if neg./pos. –4.24; 4.83 

Freq. returns beyond ±10 3.35; 5.11 

Average if beyond ±10 –13.39; 15.70 

 

 
 

Table 26: Monte Carlo monthly VaR and ES 

Value at Risk, 99% 13.64% 

Expected Shortfall, 99% 17.91% 

Portfolio Value MNT 1,000,000 

MNT Value at Risk MNT 127.467.84 

MNT Expected Shortfall MNT 163,961.31 

 

 
 

RV – variables which randomly take 

any of the values in [0,1] with equal 

probability. We interpret these RV as 
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Figure 20: Distribution of Monte Carlo
GJR-VT asymmetric t monthly returns
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the quantiles of a cumulative distribu-

tion function; 

2. We transform the data into asymmet-

ric t quantiles, with different formulae 

depending on whether they fall be-

low or above (1 – d2)/2, with d2 = 0.08 

so that the threshold value is 0.4606. 

These quantiles are equivalent to a-

symmetric t shocks; 

3. We calculate the vector of returns 

one day ahead by multiplying the first 

set of shocks with the most recent 

GJR-VT figure; 

4. We build the vector of GJR-VT condi-

tional variances using the squared 

simulated returns and the predicted 

level of volatility; 

5. We repeat each step 21 times, then 

aggregate the figures to obtain a set 

of monthly TOP-20 Index returns; 

6. We compute monthly VaR and ES, to-

gether with their term structures. 

With the exception of the negative mean re-

turn, which is nevertheless too noisy to be 

correctly estimated, the model preserves all 

the stylised facts of TOP-20 Index: a level of 

volatility in line with current market figures 

(~6.3%), positive skewness (0.98), positive 

excess kurtosis (16.67), and negative lever-

age, which is visible in the higher frequency 

of losses (53-47), the larger average gain 

(~0.6% more, in absolute value, than the av-

erage loss), the higher frequency of extreme 

gains (~1.75% higher than that of extreme 

losses), and the larger average extreme gain 

(~2.3% more than the average extreme loss) 

(Table 25, Figure 20). One month ahead Val-

ue at Risk is forecast at 13.64% (Table 26), 

between 3.40% and 3.60% per day (Figure 

21). MNT VaR is about MNT 127,500 per mil-

lion invested (~EUR 48.80).  

One month ahead Expected Shortfall is fore-

cast at 17.91%, between 4.70% and 5.50% 

per day. MNT ES is about MNT 164,000 per 

million (~EUR 62.80). These values are lower 

than those predicted by FHS because Monte 

Carlo asymmetric t better captures the posi-

tive skewness/negative leverage phenome-

na of TOP-20 Index. 

Conclusion 

We surveyed, and incorporated into our risk 

models, the most notable empirical features 

of TOP-20 Index: autocorrelation of log and 

squared returns, volatility clustering, positive 

skewness, negative leverage, and positive 

excess kurtosis. 

We showed that the simultaneous presence 

of all these features may be beneficial for in-

vestors thanks to the greater chance of ex-

treme gains, as opposed to extreme losses, 

and interpreted it as evidence of euphoria on 

the stock market. 

Among the risk models proposed, we found 

GJR-VT FHS and GJR-VT asymmetric t to 

provide the best fit to the data, so we used 

both to forecast the distribution of TOP-20 

returns one month from now. 

Overall, we do believe TOP-20 Index to be a 

very nice investment opportunity at the mo-

ment. 

 

 
 

The report is made for Standard Investment 

LLC by Federico M. Massari, a long distant 

volunteer risk analyst, using the sources pro-

vided. 

_______________ 
 

* All data from mse.mn. We modified the value of the 

close price recorded on August 13, 2010 from MNT 

11,145.50 to MNT 10,145.50; the previous datum was 

most likely an outlier resulting from transcription error. 
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