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Mongolia’s TOP-20 Index Risk Analysis, Pt. 3 
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March 12, 2017 

In the third part of our risk report on TOP-20 Index, Mongolia’s main stock market 

indicator, we focus on modelling the right tail of the distribution of returns using 

the two main approaches in extreme value theory: the extrema, or block maxima 

(BM), and the peek-over-threshold (POT). This way, we achieve a near-perfect 

fit of the whole distribution of returns.

Overview 

In this report we provide a correct specifica-

tion of the right tail of the distribution of TOP-

20 Index returns, the place where extreme 

gains are located. 

Previously surveyed models [4], although ex-

cellent at describing the left tail of the distri-

bution of returns, offered a generally poor fit 

to the right tail of the same. An accurate pre-

diction of extreme losses is, of course, very 

important for investors, but in the presence 

of positive skewness and negative leverage, 

so is that of extreme gains. 

For our purpose we resort, once again, to ex-

treme value theory. In particular, we look at 

two complementary methodologies: the ex-

trema (or block maxima, BM) approach, and 

the peek-over-threshold (POT) approach [1]. 

The focus of both is on the tail index parame-

ter , which defines the shape of the tail dis-

tribution. The extrema approach looks for the 

optimal  able to give a precise representa-

tion of the distribution followed by the maxi-

ma in a sample of data, one among the so-

called generalised extreme value (GEV) dis-

tributions: Weibull, Gumbel, and Fréchet.  

The peek-over-threshold approach looks for 

the best  to characterise the distribution fol-

lowed by exceedances over a large thresh- 

 

old, the generalised Pareto (GP) distribution.  

Although based on different sets of assump-

tions, the two methods give similar results, es-

pecially when applied to shocks (demeaned 

returns, divided by a time-varying standard 

deviation), instead of raw returns. We will pro-

vide evidence of this fact in a Monte Carlo ex-

periment. 

The joint use of an efficient conditional vola-

tility model, such as GJR-VT, a good density, 

such as the asymmetric t, up to a high quan-

tile, and extreme value theory for the right 

tail, leads to a near-perfect fit of the whole 

distribution of returns. 

Data 

We use TOP-20 Index daily GJR-VT shocks 

calibrated from daily log returns* (August 13, 

2007 – March 3, 2017). The latter are price 

returns (they only consider capital apprecia-

tion and omit dividends), gross of fees, ex-

penses, and taxes. We use shocks, instead 

of returns, because the former are more sta-

ble and less subject to variability, as they ef-

fectively neutralise autocorrelation and vola-

tility clustering which tend to inflate returns 

in periods of directional mFarkets and which 

may inject bias into the data fitting process. 
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Shortcomings of the previous model 

Before discussing extreme value theory, we 

briefly review the GJR-VT asymmetric t mod-

el introduced in the second part of this risk 

report, pointing out its weakness in fitting the 

right tail of the distribution of TOP-20 returns. 

Let us separately analyse its components. 

GJR-VT, the conditional variance model, is 

fully specified by , the intercept,  and , 

respectively, the ARCH and GARCH coeffi-

cients, and , the leverage parameter. The 

asymmetric t distribution is completely deter-

mined by d1, the number of degrees of free-

dom, and d2, the skewness parameter. 

Maximum-likelihood (MLE) calibration leads 

to optimal values  = 1.07E–05,  = 0.1954, 

 = 0.8023,  = –0.1193, d1 = 4.06, and d2 = 

0.08. 

The model provides a near-perfect fit up to a 

high quantile, above which it visibly deviates 

from empirical data (Figure 1). To determine 

the quantile, we may compute the absolute 

distance between the sorted GJR-VT shocks 

and the corresponding values predicted by 

the asymmetric t distribution, and ask such 

distance to be smaller than a certain thresh-

old, say 0.30. The t quantile above which this 

condition is violated is the one we are look-

ing for. 

For immediate detection of violations we may 

plot the logarithm of the absolute distance 

(the transformation is chosen to avoid spikes 

in the graph). When the absolute distance 

between two data points is very small, its log-

arithm is negative and large because the 

right-sided limit of the logarithm to zero is mi-

nus infinity. As a consequence, we expect 

good models to produce graphs with very 

few data points higher than ln(0.30) ≈ –1.2040  

(Table 1). The asymmetric t misaligns eleven, 

and severely misaligns (distance > 0.50) six  

 
 

Table 1: Asymmetric t distribution right tail fit 

Absolute distance allowed 0.30 

Logarithmic distance –1.2040 

No. violations (severe) 11 (6) 

Threshold quantile (obs.) 3.5272 (2373rd) 
 

 
 

shocks (Figure 2; gray and red crosses de-

tect points in which the distance is more than 

allowed). The threshold quantile is 3.5272, 

and corresponds to the 2373rd observation; 

all shocks above this mark belong to the right 

tail, which we are now going to model with 

EVT. 

Generalised extreme value and the 

block maxima approach 

The Fisher-Tippett theorema states that, if the 

maxima in a sample are i.i.d. (independent 

and identically distributed) and if there exist 

a location parameter  (mean), real number, 
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Figure 1: QQ-plot of GJR-VT shocks
against the asymmetric t distribution
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Figure 2: Logarithmic absolute distance 
between GJR-VT shocks and t quantiles

Asymmetric t Indicator
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a scale parameter  > 0 (standard devia-

tion), and a cumulative distribution function 

H such that the limit distribution of standard-

ised maxima converges to H then, depend-

ing on the optimal value of the tail parameter 

, H must be one of the three standard ex-

treme value distributions: 

 < 0 (thin tails): Weibull distribution 
 

 = 0 (exponential): Gumbel distribution 
 

 > 0 (fat tails): Fréchet distribution 

When this occurs, the cumulative distribution 

function of the maxima is said to belong to 

the domain of attraction of H. 

For instance, the cdf of the Gaussian density 

belongs to the domain of attraction of the 

Gumbel distribution, that of the Student’s t to 

the Fréchet distribution. 

To verify which distribution the maxima be-

long to, we first divide the whole sample of 

GJR-VT shocks into 40 subgroups, each one 

covering 60 trading days (three months of 

daily data) and, for each subgroup, we find 

the maximum value: what we get is a sample 

of 40 block maxima which should be approx-

imately i.i.d., as required (Table 2, Figure 3). 

Then, before calculating the optimal value of 

, we plot the quantiles of the sorted, stand-

ardised maxima against the Gumbel quan-

tiles. If the distribution of maxima belongs to 

the domain of attraction of the Gumbel, the 

QQ-plot should be roughly linear; if it be-

longs to that of either the Weibull or the Fré-

chet, the plot should be convex or concave, 

respectively. So: 

linear QQ-plot: Gumbel distribution 
 

convex QQ-plot: Weibull distribution 
 

concave QQ-plot: Fréchet distribution 

The empirical distribution of GJR-VT shock  

Table 2: Distribution of shock maxima statistics 

No. of groups 40 

Data in each group 60 shocks (3m) 

Min./max. 1.1259; 4.8129 

Mean 2.7339 

Standard deviation 0.8321 

Skewness 0.3316 

Excess kurtosis –0.2725 
 

 
 

 

 

maxima seems to belong to the domain of at-

traction of the Weibull, as the QQ-plot is con-

vex, apart from the last segment (Figure 4). 

Thus, we expect the tail parameter  > 0. 

We estimate the optimal values for , , and 

 through MLE.  = 2.4067,  = 0.7608, and 

 = –0.1785, as expected, so that the shape 

parameter  = 1/ = –5.6010 (Table 3). Also, 

the distribution has an upper bound, corre-

sponding to the quantile 6.6677: this means 

no predicted shock can be higher than that. 
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Figure 3: Time distribution of shock maxima
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Figure 4: Empirical quantile of the shock 
maxima against the Gumbel quantile
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We provide the optimal Weibull density juxt- 

aposed with the histogram of maxima (Fig-

ure 5). The peak of the density occurs at , 

and it is where the data locate on average, 

or cluster; the width of the same is given by 

; the thickness of the right tail by ; overall 

shape by .  

With the optimal parameters at hand, we pro-

ceed to apply the Weibull fit to the right tail 

of the distribution of sorted GJR-VT shocks. 

We may freely select the quantile from which 

to start, the only requirement is that it should 

be high enough (say, greater than 2.50). We 

choose the one above which the distance be-

tween the shocks and the asymmetric t quan-

tile is larger, in absolute value, than that be-

tween the shocks and the GEV quantile. To 

ease the comparison, we plot the logarithmic 

distances, and put a cross on data for which 

this condition is met (Figure 6). Apart from 

two isolated observations (nn. 2320-1), for 

which the improvement is in any case negli-

gible, the Weibull distribution does not offer 

a good fit until data point 2350, above which 

it gives a much higher conformity to empiri-

cal values than the asymmetric t. The thresh-

old quantile corresponding to such data point 

is 2.5290b. Joint use of the asymmetric t distri-

bution up to, and the GEV above, the thresh-

old quantile, leads to a near-perfect fit of the 

whole set of GJR-VT shocks (Figure 7). 

The main drawback of the maxima approach 

is that to preserve the validity of the i.i.d. as-

sumption it only considers the largest values 

in each subsample, ignoring data which may 

still provide useful information on the shape 

of the right tail. The peek-over-threshold ap-

proach, instead, focuses on the exceedanc-

es over a large threshold and, thanks to the 

smaller loss of information, it may yield a bet-

ter estimate of the right tail. 

Table 3: GEV parameter estimation, MLE 

 (csi) –0.1785 

 (mu) 2.4067 

 (psi) 0.7608 

 (alpha) = 1/ –5.6010 

Maximised log-likelihood –48.26 

Which distribution? Weibull 

Upper bound 6.6677 
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Figure 5: Distribution of GJR-VT shock 
maxima against the Weibull distribution
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Figure 6: Logarithmic distance of the 
theoretical quantiles to empirical data 

Asymmetric t Weibull Indicator
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Figure 7: QQ-plot of GJR-VT shocks
against the asymmetric t with GEV right tail

Theoretical Quantile GJR-VT Shocks
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Generalised Pareto distribution and  

the peek-over-threshold approach 

If the cumulative distribution function of GJR-

VT shocks is in the domain of attraction of 

the extreme value distribution H, then the ex-

cess distribution function Fu (the cdf of all the 

realisations above a user-defined threshold 

u) can be approximated, for u large, by the 

generalised Pareto distributionc. 

The GPD is completely specified by two pa-

rameters, whose meaning is the same as in 

the maxima approach: , the tail index, and 

, a positive scaling function of the threshold 

u (there is no parameter ). An increase of , 

with  unvaried, makes the right tail thicker 

and the shoulder steeper. An increase of , 

with  unvaried, makes the distribution more 

spread out. The optimal values for  and  

crucially depend on that of the threshold u, 

which should both be high enough to ensure 

that the limit distribution of the excess distri-

bution function is actually a GPD, and low e-

nough so that there is a sufficient amount of 

data for a stable estimation of the parame-

ters. We choose u = 2.50, so as to have 31 

exceedances (~1.30% of total observations) 

for model calibration (Table 4). We retrieve 

optimal values for  and  through MLE. 

 = –0.2978,  = 0.9093, so that  = –3.3582. 

We provide the optimal tail density juxta-

posed with the histogram of exceedances 

(Figure 8). The threshold quantile seems to 

be appropriately selected because the dis-

tances between the sorted shocks and the 

theoretical values from the GPD are much 

smaller (Figure 9). The combined use of the 

asymmetric t distribution up to, and the GPD 

above, such quantile, leads to a near-perfect 

fit of the entire set of GJR-VT shocks (Figure 

10). Also, the proxy given by the GPD is al-

most identical to that provided by the GEV. 

Table 4: GPD parameter estimation, MLE 

Threshold quantile 2.50 

No. exceedances 31 

Fraction of the sample 1.30% 

 (csi) –0.2978 

 (psi) 0.9093 

 (alpha) = 1/ –3.3562 

Maximised log-likelihood –18.82 
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Figure 9: Logarithmic distance of the 
theoretical quantiles to empirical data

Asymmetric t GPD Indicator
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Figure 10: QQ-plot of GJR-VT shocks
against the asymmetric t with GPD right tail

Theoretical Quantile GJR-VT Shocks
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Although the peek-over-threshold approach 

does not sacrifice as many data points as the 

extrema approach does, it still suffers from 

two major drawbacks. The first one is the as-

sumption of i.i.d.-ness of all returns (not only 

of the maxima over subsamples), which is 

hardly met in practice. The second one is the 

selection of the optimal threshold u, which 

inevitably falls on the user. 

Model performance 

To show that the two EVT models give very 

close results (the similarity was already ap-

parent from the QQ-plots), we forecast the 

distribution of TOP-20 Index returns a month 

from now, using Monte Carlo and the inverse 

transform method [2] [3]. 

To simulate a GJR-VT asymmetric t model 

with GEV right tail: 

1. We create 21 sets of 100,000 uniform 

random variables. We interpret these 

variables as probabilities, since they 

take value in [0,1]; 

2. We compute the asymmetric t quan-

tiles corresponding to such probabil-

ities, with different formulae depend-

ing on whether the latter fall below or 

above (1 – d2)/2, with d2 = 0.08 so that 

the threshold value is 0.4608; 

3. If the asymmetric t quantile is greater 

than or equal to 2.5290, the value a-

bove which the GEV fit is superior, we 

switch to the Weibull quantile; 

4. We calculate the vector of returns one 

day ahead by multiplying the first set 

of shocks with the most recent GJR-

VT figure; 

5. We build the vector of GJR-VT condi-

tional variances using the squared 

simulated returns and the predicted  

Table 5: MC-GEV investment statistics 

No. of simulations 100,000 

Average return –0.1749% 

Volatility 5.8560% 

Skewness 0.4558 

Excess kurtosis 3.4651 

Neg./pos. return frequency 53.51%; 46.49% 

Average if neg./pos. –4.24%; 4.51% 

Freq. returns beyond ±10% 3.47%; 4.34% 

Average if beyond ±10% –13.27%; 14.48% 

 

 
 

Table 6: MC-GEV monthly VaR and ES 

Value at Risk, 99% 13.77% 

Expected Shortfall, 99% 17.72% 

Portfolio value MNT 1,000,000 

MNT Value at Risk MNT 128,632.11 

MNT Expected Shortfall MNT 162,364.65 

 

 
 

level of volatility (multiplier: 0.6); 

6. We repeat each step 21 times, then 

aggregate the figures to obtain a set  
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Figure 11: MC-GEV distribution of
TOP-20 Index monthly returns

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

M
a

xi
m

u
m

 L
o

ss

Day(s) Ahead

Figure 12: MC-GEV term structure of
Value at Risk and Expected Shortfall

MC Daily VaR MC Daily ES



 

7 
 

of monthly TOP-20 Index returns; 

7. We compute monthly VaR and ES, to-

gether with their term structures. 

To simulate a GJR-VT asymmetric t model 

with GPD right tail, we proceed in the same 

way except for the third step, which is modi-

fied as follows: 

3. If the asymmetric t quantile is greater 

than or equal to u = 2.50, the thresh-

old above which the GPD is calibrat-

ed, we switch to the GPD quantile. 

The two models produce very similar results. 

Both predict a negative average return, quite 

in line with the empirical evidence of the most 

recent six-year period [5] (Tables 5 and 7). 

Volatility is close to current market figures 

(~5-6%), positive skewness, positive excess 

kurtosis, and negative leverage are all pres-

ent. The latter is visible in the higher frequen-

cy of losses (54-46), the larger average gain 

(0.3% more, in absolute value, than the aver-

age loss), the higher frequency of extreme 

gains (~1% higher than that of extreme loss-

es), and the greater average extreme gain 

(1.2% more than the average extreme loss) 

(Figures 11 and 13). One-month ahead Val-

ue at Risk is around 13.7% (Tables 6 and 8), 

or between 3.30% and 3.50% per day (Fig-

ures 12 and 14). MNT VaR is around 128,500 

per million invested (~EUR 49.20). Monthly 

Expected Shortfall is around 17.8%, or be-

tween 4.70% and 5.00% per day. MNT ES is 

around 162,500 per million (~EUR 62.20). 

Comparison to the previous model 

We can contrast the output from the hybrid 

models with that of the pure asymmetric t, as 

shown in Tables 25-26 in part two of the risk 

report. It is clear that the hybrid distributions 

offer a more precise estimate of the four mo- 

Table 7: MC-GPD investment statistics 

No. of simulations 100,000 

Average return –0.1828% 

Volatility 5.9007% 

Skewness 0.5646 

Excess kurtosis 6.1368 

Neg./pos. return frequency 53.77%; 46.23% 

Average if neg./pos. –4.24%; 4.53% 

Freq. returns beyond ±10% 3.47%; 4.36% 

Average if beyond ±10% –13.27%; 14.56% 

 

 
 

Table 8: MC-GPD monthly VaR and ES 

Value at Risk, 99% 13.63% 

Expected Shortfall, 99% 17.77% 

Portfolio value MNT 1,000,000 

MNT Value at Risk MNT 128,436.02 

MNT Expected Shortfall MNT 162,786.23 

 

 
 

ments: the predicted average return is nega-

tive and closer to the empirical figures of the 

past six years; volatility is dampened, thanks 
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Figure 13: MC-GPD distribution of
TOP-20 Index monthly returns
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to the lower dispersion of gains; skewness 

and excess kurtosis, still positive, are now 

smaller for the same reason. The relative fre-

quency of losses and gains is unvaried be-

cause EVT simply improves the fit of the right 

tail, with no effect on the balance between 

positive and negative returns. What changes,  

however, are the average gain, the frequen-

cy of extreme gains, and the average ex-

treme gain. All are now reduced, due to the 

lower dispersion of returns in the tail. The av-

erage return is 0.30% smaller, the frequency 

of extreme returns is 0.70% lower, and the 

average extreme return is 1.20% less. 

Overall, we believe gains, especially large 

ones, to be much better specified than they 

were before. 

Conclusion 

We modelled the right tail of the distribution 

of TOP-20 Index returns using the main tech-

niques in extreme value theory: the extrema, 

or block maxima, approach and the peek-o-

ver-threshold approach. Both look for the op-

timal value of , the parameter governing the 

shape of the right tail. We found the Weibull 

distribution with  = –0.1748 and the GPD with 

 = –0.2978 to offer the nicest fit, which is al-

so better than that provided by the asym- 

metric t, above the threshold quantile ~2.50. 

With the EVT improvement, we finally achieve 

a near-perfect fit of the whole density of TOP-

20 Index returns. 

The report is made for Standard Investment 

LLC by Federico M. Massari, a long distant 

volunteer risk analyst, using the sources pro-

vided. 

_______________ 
 

* All data from mse.mn. We modified the value of the 

close price recorded on August 13, 2010 from MNT 

11,145.50 to MNT 10,145.50; the previous datum was 

most likely an outlier resulting from transcription error. 
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Notes 

a Also known as the Fisher-Tippett-Gnedenko theorem, 

or as the first theorem in extreme value theory. 

b Note that this is the quantile for the single shock, not 

for the maximum. It is obtained from the relationship (1 

– p*) = (1 – p)N, with p* being the probability that the 

maximum over a subsample is above a large quantile, 

p = 1 – (2350 – 0.5)/sample size ≈ 1 – 98.59% being 

the probability that the single shock is above a large 

quantile, and N = 60 being the number of shocks in a 

subsample. The corresponding quantile for the maxi-

mum is 4.6752. See [1], paragraph 7.1.4, “Estimation 

of high quantiles”. 

c Also known as the Pickands-Balkema-de Haan theo-

rem, or as the second theorem in extreme value theory. 
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Investment LLC makes no guarantee of accuracy, timeliness 
and completeness of the information. Neither Standard 
Investment nor its affiliates shall be liable for any damages 
arising out of any person’s reliance upon this report. 
 
It is not allowed to copy, reproduce and/or distribute parts 
of this research report (or the whole content) to third parties 
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